

EFEK SONIKASI TERHADAP PROSES PEMBENTUKAN NANOPARTIKEL FE₃O₄ YANG DIMODIFIKASI DENGAN PEG-6000

Silviana Simbolon

Teknik Mesin, Fakultas Teknik,, Universitas Pamulang Jl. Surya Kencana No. 1 Pamulang, Tangerang Selatan, Banten, Indonesia

E-mail:dosen01923@unpam.ac.id

Masuk : 2 Maret 2018 Direvisi : 25 Maret 2018 Disetujui :4 April 2018

Abstrak: Pada penelitian ini, serbuk nanopartikel magnetit (Fe₃O₄) dengan penambahan PEG-6000 telah berhasil dipreparasi dengan struktur kubik. Serbuk disintesis pada suhu 70°C dengan metode kopresipitasi dan dilanjutkan proses sonikasi. Serbuk nanopartikel Fe₃O₄ memiliki dua fasa yaitu Fe₃O₄ sebagai fasa dominan dan γ -Fe₂O₃ sebagai fasa minor. Pada sampel Fe₃O₄ terjadi aglomerasi atau penggumpalan partikel dengan ukuran partikel sebesar 20-80 nm. Sementara itu, sampel Fe₃O₄ dengan penambahan PEG-6000 memiliki ukuran sebesar ±25 nm. Dengan adanya penambahan PEG-6000 pada sampel Fe₃O₄, garis boundary antar partikel Fe₃O₄ semakin jelas. Sedangkan pada sampel Fe₃O₄ dengan penambahan PEG-6000 yang telah disonikasi selama 15 menit memiliki ukuran partikel sebesar ±45 nm. Efek dari sonikasi ini secara signifikan mampu mengurangi terjadinya proses aglomerasi. Pada uji sifat magnetik, sampel Fe₃O₄ dengan penambahan PEG-6000 dan melalui proses sonikasi, terjadi kenaikan nilai koersivitas dikarenakan adanya PEG-6000 yang memperkecil pengaruh medan magnet eksternal. Pada sampel Fe₃O₄ yang telah diberi PEG-6000 dan melalui proses sonikasi, terjadi kenaikan nilai remanensi dan saturasi, namun nilai koersivitasnya menurun dibandingkan sampel nanopartikel Fe₃O₄ dengan/tanpa PEG-6000 yang tidak disonikasi. Kondisi optimum didapatkan pada sampel pada sampel Fe₃O₄ yang telah diberi PEG-6000 dan melalui proses sonikasi yang memiliki nilai koersivitas sebesar 93,36 Oe, magnetik saturasi 3,82 emu/g, dan remanensi 61,96 emu/g.

Kata kunci: Efek sonikasi, nanopartikel, Fe₃O₄, PEG-6000

Abstract: In this study, the powder of magnetite nanoparticles (Fe_3O_4) with the addition of PEG-6000 has been successfully prepared by cubic structure. The powder was synthesized at 70° C by coprecipitation method and continued by sonication process. The powder of Fe_3O_4 nanoparticles has two phases Fe_3O_4 as the dominant phase and γ - Fe_2O_3 as the minor phase. In the Fe_3O_4 sample there was agglomeration of particles with particle size of 20-80 nm. Meanwhile, the Fe_3O_4 sample with the addition of PEG-6000 has size of ± 25 nm. The addition of PEG-6000 to the Fe_3O_4 sample, the grain boundary between the Fe_3O_4 particles is clearer. While the Fe_3O_4 sample with the addition of PEG-6000 which has been sonication for 15 minutes has a particle size of ± 45 nm. The effects of this sonication significantly reduced the agglomeration process. In the magnetic properties test, the Fe_3O_4 sample with the addition of PEG-6000 increased coercivity value due to PEG-6000 which minimized the influence of external magnetic field. In Fe_3O_4 samples which have been given PEG-6000 and through sonication value, but the coercive value decreases compared to samples of Fe_3O_4 nanoparticles with / without uncoupied PEG-6000. The optimum condition was obtained in the sample. In Fe_3O_4 samples which have been given PEG-6000 and through sonication process having coerced value of 93.36 Oe, magnetic saturation 3.82 emu / g, and remanence 61.96 emu / g.

Keywords: sonication effect, nanoparticle, Fe₃O₄, PEG-6000

PENDAHULUAN

Salah satu perkembangan yang sangat pesat dibidang material magnetik adalah penelitian mengenai nanopartikel magnetik. Nanopartikel magnetik merupakan jenis nanopartikel yang banyak dimanfaatkan diberbagai bidang aplikasi seperti penyerap (absorben), material penyimpan data, targeting obat, *Magnetic*

Resonance Imaging (MRI), terapi kanker, dan lain-lain [1-5]. Selain itu, dalam beberapa tahun terakhirnanopartikel magnetik juga dikembangkan untuk aplikasi sistem pendingin nanofluid.Penggunaan nanopartikel magnetik dalam sistem pendingin nanofluid atau yang lebih dikenal nanofluid magnetik, mampu meningkatkan koefisien transfer panas serta mengoptimalkan kinerja sistem pendingin karena nanofluid tersebut dapat dikontrol dengan medan magnet eksternal [6-10].

Untuk menghasilkan magnetik dalam ukuran nano, berbagai metode telah dikembangkan yang bertujuan untuk memperoleh sifat superparamagnetik yang unik dari nanopartikel magnetik.Salah satu metode yang digunakan untuk menghasilkan nanopartikel adalah dengan metode kopresipitasi atau sisntesis kimia [6-9]. Ada berbagai parameter yang mempengaruhi proses pembentukan nanopartikel magentik dengan metode kopresipitasi ini salah satunya yaitu dengan penambahan polimer yang digunakan untuk membentuk dan mengontrol ukuran serta struktur pori nanopartikel. Polimer yang umumnya digunakan dalam pembentukan nanopertikel magnetik adalah polietilen glikol (PEG). Dengan adanya penambahan PEG, sifat reaktif atom Fe pada permukaan nanopartikel Fe₃O₄akan mengalami proses modifikasi oleh PEG. [11-12].

PEG merupakan salah satu jenis polimer yang dipakai untuk membentuk dan mengontrol ukuran partikel. PEG dapat berfungsi sebagai template, karena PEG dapat membungkus partikel besi sehingga dapat mencegah terjadinya proses agregasi lebih lanjut. Hal ini disebabkan karena PEG menempel pada permukaan partikel dan menutupi ion positif besi, sehingga diperoleh hasil partikel dengan bentuk dan ukuran yang lebih homogen

Beberapa peneliti telah melakukan sintesis nanopartikel Fe_3O_4 untuk menghasilkan ukuran yang optimal. Nursa dkk. (2016) melakukan sintesis nanopartikel Fe_3O_4 dengan metode kopresipitasi menggunakan polimer PEG dengan jenis PEG-1000, PEG-2000, PEG-4000, dan PEG-6000. Dari penelitian tersebut menunjukkan bahwa hasil nanopartikel Fe_3O_4 yang optimum diperoleh pada saat sintesis menggunakan polimer PEG-6000 dengan ukuran kristal sebesar $18,29 \pm 0,05$ nm dan ukuran partikel sebesar 60,75 nm [13]. Selanjutnya, Kurniawan dkk. (2017) melakukan sintesis nanopartikel Fe_3O_4 dengan metode kopresipitasi menggunakan polimer PEG-6000. Hasil penelitian tersebut menunjukkan bahwa nanopartikel Fe_3O_4 yang diperoleh memiliki nilai koersivitas partikel (Hcj) sebesar 85,9 Oe dengan diameter kristal sekitar 14 - 32 nm [14].

Pada penelitiaan ini, metode yang digunakan dalam preparasi sampel Fe_3O_4 adalah metode kopresipitasi dan dilanjutkan dengan proses sonikasi. Keunggulan dari metode ini adalah prosedur proses sintesis yang sederhana, serta berbagai paramter dapat dikontrol dan divariasi mulai dari rasio suhu, pH, agen pengendap, dan lain sebagainya [15]. Dalam penelitian ini, untuk mengetahui ukuran dan sifat magnetik dari nanopartikel Fe3O4 akan diuji menggunakan uji true density, X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), dan Vibrating Sample Magnetometer (VSM).

METODOLOGI

Sintesis serbuk Fe₃O dengan metode kopresipitasi dilakukan dengan mencampurkan *raw material* dari bahan teknik sebanyak 12,7 gram FeCl₂'4H₂O (ferroklorida tetrahidrat) dan 32,5 gram FeCl₃'6H₂O (ferriklorida heksahidrat) serta menggunakan aquades sebanyak 50 ml sebagai pelarut. Larutan prekusor I kemudian diaduk menggunakan *magnetic stirrer* pada suhu 50 °C selama 1 jam. Reaksi kimia yang digunakan pada sintesis ini sebagai berikut :

 $2FeCl_{3} \cdot 4H_{2}O + FeCl_{2} \cdot 6H_{2}O + 8NH_{4}OH \longrightarrow Fe_{3}O_{4} + 8NH_{4}Cl + 14H_{2}O \qquad (4.1)$

Kemudian, dibuat larutan precursor II yang terdiri atas aquades 50 ml dan PEG 6000 sebanyak 3,25 gram. Larutan pekersor I dan II di *drop* kedalam larutan pengendap yang merupakan campuran 31 mL NH₄OH (6,5 M) dengan 69 ml aquades dan diaduk menggunakan *magnetic stirrer* pada suhu 50°C selama 2 jam. Kemudian,larutan hasil kopresipitasi dicuci dengan aquades menggunakan alat *centrifuge* selama 15 menit. Setelah diperoleh endapan, selanjutnya endapan Fe₃O₄ dikeringkan dalam oven pada suhu 50°C selama 24 jam sampai menjadi serbuk Fe₃O₄. Dari hasil serbuk Fe₃O₄, selanjutnya dilakukan proses sonikasi selama 30 menit pada campuran 75 mL aquades dan 2 gram serbuk Fe₃O₄. Hal ini bertujuan untuk kemungkinan aglomerasi pada serbuk Fe₃O₄ sehingga lebih homogen.

Untuk mengtahui karakteristik dari sampel dilakukan pengujian antara lain yaitu uji true density, X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), dan Vibrating Sample Magnetometer (VSM).

HASIL DAN PEMBAHASAN

Untuk mengidentifikasi struktur kristal dari sampel Fe₃O₄ yang telah dilapisi oleh molekul PEG dan telah disonikasi, maka dilakukan karakterisasi menggunakan XRD. Seperti yang ditunjukkan pada Gambar 1, hasil

Jurnal Teknik Mesin: CAKRAM (2018)

Silviana Simbolon, Efek Sonikasi terhadap Proses Pembentukan...,

analisa XRD dengan menggunakan sofware Match! menunjukkan bahwa serbuk sampel terdiri dari fasa kristal Fe₃O₄ sebagai fasa dominan dan γ -Fe₂O₃ sebagai fasa minor. PadaTabel 1, dapat dilihat bahwa dari fasa Fe₃O₄ diperoleh nilai parameter kisi *a* sebesar 8,3963 Å dengan struktur kristal spinel kubik serta memiliki bidang hkl secara berturut-turut adalah (220), (311), (400), (422), (511), dan (440). Dari puncak bidang tertinggi (311) diketahui bahwa kristal Fe₃O₄ memiliki nilai FWHM sebesar 0,01553 radian dan memiliki ukuran diameter kristalin sebesar 9,383 nm. Ukuran diameter kristalin di hitung menggunakan rumus $d = k\lambda/B\cos\theta$ dimana d ukuran kristal, k is a konstanta Scherrer, λ adalah panjang gelombang x-ray and B lebar bagian tengah hingga puncak (FWHM). Sedangkan dari fasa γ -Fe₂O₃ diperoleh nilai parameter kisi *a* sebesar 8,35 Å dengan struktur kristal Kubik. Munculnya fasa γ -Fe₂O₃ disebabkan oleh selamaproses sintesis nanopartikel Fe₃O₄ terjadi proses oksidasi dari Fe²⁺ menjadi Fe³⁺ sehingga terbentuklah fasa γ -Fe₂O₃.

Gambar 1. Hasil karakterisasi XRD sampel Fe₃O₄ tanpa PEG-6000 dan tanpa proses sonikasi.

Tabel 1. Parameter kisi $Fe_3O_4 dan \gamma - Fe_2O_3$

Fasa	Parameter kisi (Å)	Struktur kristal	
Fe ₃ O ₄	8,3963	Kubik	
γ -Fe ₂ O ₃	8,35	Kubik	

Dari Gambar 2a, diketahui bahwa mikrostruktur pada sampel Fe₃O₄ terjadi aglomerasi atau penggumpalan partikel Fe₃O₄ dengan rata-rata ukuran partikel sebesar 18-80 nm yang dianalisa melalui gambar menggunakan *sofware* imageJ. Proses aglomerasi pada partikel ini terjadi akibat adanya *surface area* yang besar (rasio antara volume dan luas permukaan) sehingga menghasilkan energi permukaan (*surface energy*) yang tinggi. Dengan adanya penambahan PEG-6000, proses aglomerasi semakin berkurang dan dispersi nanopartikel semakin meningkat [16]. Hal tersebut ditunjukkan pada gambar 2b dimana ukuran rata-rata partikel pada sampel Fe₃O₄ dengan penambahan PEG-6000 sebesar ± 25 nm. Selain itu, akibat penambahan PEG juga memperjelas garis *boundary* antar partikel Fe₃O₄. Kemungkinan terbesar berkurangnya proses aglomerasi ini dikarenakan lapisan PEG yang melapisi permukaan partikel memperlemah interaksi antar partikel. Pada Gambar 2c menunjukkan partikel dari sampel Fe₃O₄dengan penambahan PEG-6000 yang telah disonikasi selama 15 menit memiliki ukuran sebesar ± 45 nm. Dari gambar tersebut terlihat bahwa akibat getaran yang dihasilkan oleh efek sonikasi mampu meningkatkan dispersi nanopartikel sehingga cukup efektif mengurangi terjadinya proses aglomerasi.

Gambar 2. Hasil karakterisasi FE-SEM pada mikrostruktur sampel Fe_3O_4 a) tanpa PEG-6000, b) dengan penambahan PEG-6000 dan c) dengan penambahan PEG-6000 dan proses sonikasi.

Dari hasil pengukuran sifat magnetik (Gamar 3) diketahui bahwa sampel Fe_3O_4 , $Fe_3O_4 + PEG$, dan $Fe_3O_4 + PEG$ setelah sonikasi memiliki karakteristik superparamagentik [17]. Seperti ditunjukkan pada Tabel 2, sampel Fe_3O_4 memiliki nilai koersivitas (H_{jc}) sebesar 90,54 Oe, remanensi (M_r) sebesar 3,06 emu/g dan magnetik saturasi (M_s) sebesar 47,21 emu/g. Namun setelah ditambahkan PEG, nilai saturasi menurun menjadi 33,84 emu/g. Penurunan nilai saturasi ini dapat disebabkan oleh ukuran kristalin yang lebih kecil serta adanya material nonmagnetik yang menyelimuti nanopartikel Fe_3O_4 .

Tabel 2. Sifat magnetik dari sampel Fe_3O_4 a) tanpa PEG-6000, b) dengan PEG-6000 dan c) dengan PEG-6000
dan proses sonikasi.

Sampel	H _{cj} (Oe)	<i>M_s</i> (emu/g)	$M_r(\text{emu/g})$
А	90.54	47.21	3.06
В	102.64	33.84	3.68
С	93.36	61.96	3.82

Sementara itu, nilai koersivitas dan remanensi mengalami kenaikan dikarenakan adanya PEG yang memperkecil pengaruh medan magnet eksternal ketika diturunkan, sehingga domain magnetik dari Fe_3O_4 cenderung lebih lambat untuk menyesuaikan arah medan eksternal. Pada sampel yang telah di sonikasi, terjadi kenaikan nilai remanensi dan saturasi, namun nilai koersivitasnya menurun dibandingkan sampel nanopartikel Fe_3O_4 tanpa sonikasi. Perubahan ini disebabkan karena ukuran nanopartikel yang lebih besar namun aglomerasi tidak terlalu signifikan dibandingkan tanpa sonikasi. Dari hasil yang didapatkan kondisi terbaik diperoleh pada serbuk Fe_3O_4 dengan penambahan PEG-6000 dan proses sonikasi. Hal ini disebabkan sifat magnetik serbuk Fe_3O_4 tersebut memiliki sifat mendekati sifat superparamagnetik yaitu memiliki ukuran nanopartikel dengan remansi dan koersivitas yang sangat kecil dibandikan medan magnetic eksternal dan magnetik saturasi tinggi.

Gambar 3. Kurva histerisis dari sampel Fe₃O₄ a) tanpa PEG-6000, b) dengan PEG-6000 dan c) dengan PEG-6000 dan proses sonikasi.

KESIMPULAN

Nanopartikel magnetit (Fe₃O₄) telah berhasil dipreparasi dengan penambahan PEG-6000 menggunakan metode kopresipitasi. Serbuk nanopartikel Fe₃O₄ memiliki dua fasa yaitu Fe₃O₄ sebagai fasa dominan dan γ -Fe₂O₃ sebagai fasa minor. Pada sampel Fe₃O₄ terjadi aglomerasi atau penggumpalan partikel dengan ukuran partikel sebesar 20-80 nm. Sementara itu, sampel Fe₃O₄ dengan penambahan PEG-6000 memiliki ukuran sebesar ±25 nm. Dengan adanya penambahan PEG-6000 pada sampel Fe₃O₄, garis boundary antar partikel Fe₃O₄ semakin jelas. Sedangkan pada sampel Fe₃O₄ dengan penambahan PEG-6000 yang telah disonikasi selama 15 menit memiliki ukuran partikel sebesar ±45 nm. Efek dari sonikasi ini secara signifikan mampu mengurangi terjadinya proses aglomerasi. Kondisi optimum didapatkan pada sampel pada sampel Fe₃O₄ yang telah diberi PEG-6000 dan melalui proses sonikasi yang memiliki nilai koersivitas sebesar 93,36 Oe, magnetik saturasi 3,82 emu/g, dan remanensi 61,96 emu/g.

DAFTAR PUSTAKA

- [1] P.K. Deheri, V. Swaminathan, S.D. Bhame, Z. Liu, R.V. Ramanujan, Chem. Mater. 22 (2010) 6509–6517.
- [2] I. Sharifi, H. Shokrollahi, S. Amiri, J. Magn. Magn. Mater. 324 (2012) 903–915.
- [3] S.D. Bhame, V. Swaminathan, P.K. Deheri, R.V. Ramanujan, Adv. Sci. Lett. 3 (2010) 1–6.
- [4] S. Thomas, D. Sakthikumar, Y. Yoshida, M.R. Anantharaman, J. Nanopart. Res. 10 (2008) 203–206.
- [5] J. Philip, T. Jaykumar, P. Kalyanasundaram, B. Raj, Meas. Sci. Technol. 14 (2003) 1289–1294.
- [6] M. NabeelRashin, and J. Hemalatha, Ultrasonic 52 (2012) 1042-1029. Elsevier. Doi :10.1016/j.ultras.2012.08.005
- [7] Suharyadi E, Setiadi E A, Shabrina N, Kato T and Iwata S, Adv. Mater. Res. 896 (2014) 126
- [8] Liang X, Shi H, Jia X, Yang Y, and Liu X, Mater. Sci. Appl. 2 1644
- [9] Bangale S V, Patil D R, and Bamane S R, Archives of Applied Science Research 3 (2011) 506
- [10] Setiadi E A, Sebayang P, Ginting M, Sari A Y, Kurniawan C, Saragih C S and Simamora P Journal of Physics: Conference Series 776 012020 (2016)
- [11] Zhang Y, Kohler N and Zhang M Q, Mat. Res. Soc. Symposium Proceeding MRS San Francisco 981 (2002)
- [12] Zhang Y, Kohler N and Zhang M Q Biomaterials 23 (2002) 1553

ISSN 2620-6706

Silviana Simbolon, Efek Sonikasi terhadap Proses Pembentukan...,

- [13] Nursa, I., Dwi P., dan Arif B, Jurnal Fisika Unand (2016)
- [14] C. S. Saragih and P. Simamora E. A. Setiadi, P. Sebayang, M. Ginting, A. Y. Sari, C. Kurniawan, Journal of Physics: Conference Series (2017) Doi: 10.1088/1742-6596/776/1/012020.
- [15] Simbolon S, Setiadi E A, Saputra A S P, Marlianto E, Djuhana, Kurniawan C, Yunus M, and Sebayang P. (2018). Doi :10.1088/1757-899X/309/1/012029.
- [16] V.A.J. Silva, P.L. Andrade, M.P.C. Silva, A. Bustamante Domingue, Luis De Los Santos Valladares, J. Albino Aguiar, J. Magn. Magn. Mater. (2013) Doi: 10.1016/j.jmmm.2013.04.062i.
- [17] M. Anbarasu, M. Anandan, E. Chinnasamy, V. Gopinath, K. Balamurugan, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 135 (2015) 536–539.