Klasifikasi Opini Masyarakat terhadap Jasa Ekspedisi J&T Express pada Media Sosial Twitter dengan Naïve Bayes
Abstract
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Diamantini, C., Mircoli, A., Potena, D., & Storti, E. (2019). Social information discovery enhanced by sentiment analysis techniques. Future Generation Computer Systems, 95, 816–828. https://doi.org/10.1016/j.future.2018.01.051
Handayani, E. T., & Sulistiyawati, A. (2021). Analisis Sentimen Respon Masyarakat Terhadap Kabar Harian Covid-19 Pada Twitter Kementerian Kesehatan Dengan Metode Klasifikasi Naive Bayes. Jurnal Teknologi Dan Sistem Informasi (JTSI), 2(3), 32–37. http://jim.teknokrat.ac.id/index.php/JTSI
Handoko, W. T., Supriyanto, E., Purwadi, D. I., Budiarso, Z., & Listiyono, H. (2022). Klasifikasi Opini Pengguna Media Sosial Twitter Terhadap JNT Di Indonesia dengan Algoritma Decision Tree. Jurnal Sains Komputer & Informatika (J-SAKTI), 6(2), 790–799.
Ika, N., Kalingara, P., Pratiwi, O. N., & Anggana, H. D. (2021). Analisis Sentimen Review Customer Terhadap Layanan Ekspedisi Jne Dan J & T Express Menggunakan Metode Naïve Bayes Sentiment Analysis Review Customer of Jne and J & T Express Expedition Services Using Naïve Bayes Method. E-Proceeding of Engineering, 8(5), 9035–9048.
Irawan, F. R., Jazuli, A., Khotimah, T., Studi, P., Informatika, T., Kudus, U. M., & Neighbor, K. (2022). Analisis Sentimen terhadap Pengguna Gojek Menggunakan Metode K-Nearset Neighbors. JIKO (Jurnal Informatika Dan Komputer), 5(1), 62–68. https://doi.org/10.33387/jiko
Lesmana, R., & Andarsyah, R. (2022). Model Klasifikasi Multinomial Naïve Bayes Untuk Analisis Sentiment Terkait Non-Fungible Token. Jurnal Teknik Informatika, 14(3), 135–139.
Nurul Hidayah, Y., & Sahibu, S. (2021). Algoritma Multinomial Naïve Bayes Untuk Klasifikasi Sentimen Pemerintah Terhadap Penanganan Covid-19 Menggunakan Data Twitter. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(4), 820–826. https://doi.org/10.29207/resti.v5i4.3146
Puh, K., & Bagic Babac, M. (2022). Predicting sentiment and rating of tourist reviews using machine learning. Journal of Hospitality and Tourism Insights, 6(3), 1188–1204. https://doi.org/10.1108/JHTI-02-2022-0078
Ruz, G. A., Henríquez, P. A., & Mascareño, A. (2020). Sentiment analysis of Twitter data during critical events through Bayesian networks classifiers. Future Generation Computer Systems, 106, 92–104. https://doi.org/10.1016/j.future.2020.01.005
Singh, G., Kumar, B., Gaur, L., & Tyagi, A. (2019). Comparison between Multinomial and Bernoulli Naïve Bayes for Text Classification. 2019 International Conference on Automation, Computational and Technology Management, ICACTM 2019, 593–596. https://doi.org/10.1109/ICACTM.2019.8776800
Verawati, I., & Audit, B. S. (2022). Algoritma Naïve Bayes Classifier Untuk Analisis Sentiment Pengguna Twitter Terhadap Provider By . u. 6, 1411–1417. https://doi.org/10.30865/mib.v6i3.4132
Yutika, C. H., & Faraby, S. Al. (2021). Analisis Sentimen Berbasis Aspek pada Review Female Daily Menggunakan TF-IDF dan Naïve Bayes. 5(April), 422–430. https://doi.org/10.30865/mib.v5i2.2845
DOI: http://dx.doi.org/10.32493/jtsi.v6i3.30878
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Bramantyo Ridho Ansyahry, Imam Husni Al Amin

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Jurnal Teknologi Sistem Informasi dan Aplikasi (ISSN: 2654-3788 e-ISSN: 2654-4229)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License