Klasifikasi Hasil Cardiotocography (CTG) Ibu Hamil untuk Memprediksi Kesehatan Janin

Aprindita Dwi Monica, Sulastri Sulastri


A future mother must want the fetus in her womb to be in a healthy condition. A healthy fetus is one that has optimal growth and has sufficient nutrients at the time it is in the womb. The risk of miscarriage and maternal and fetal deaths can be reduced by monitoring fetal health and staying alert when necessary. CTG is carried out in cases where there is a risk of pregnancy and a relatively worrying birth. It will be easier to make further decisions to reduce health risks at birth if the CTG examination shows a good fetal condition. The study aims to study the comparison of different classification algorithms used in determining the exact values of the fetal health datasets used through Knowledge Discovery in Databases (KDD). The researchers used a data collection of 2126 data points from Kaggle’s website that had 22 variables divided into three categories Normal, Suspect, and Pathological. Prolonged decelerations, abnormal short-term variability, and the percentage of time with abnormally long-term variability are the most significant variables. The results of the study were obtained by dividing the data set into training and trial data, which were then divided into three trials. The results showed that the KNN algorithm had the best accuracy value of 91% in the second trial, the SVM algorithm had the most accurate value of 87% in the first and second trials, the Logistic Regression algorithm had the Best Accuracy Value of 84% in the Second Trial, the Naive Bayes algorithm had the Best Accuracy value of 84%, and the Decision Tree Algorithm had 89% in the First and Second Trials.


Classification; Cardiotocography; Data Mining


Amelia, U., Indra, J., & Masruriyah, A. F. N. (2022). Implementasi Algoritma Support Vector Machine ( SVM ) Untuk Prediksi Penyakit Stroke Dengan Atribut Berpengaruh. Scientific Student Journal for Information, Tecnology and Sciene, III(2), 254–259. http://journal.ubpkarawang.ac.id/mahasiswa/index.php/ssj/article/view/447

Rahmi, Antoni, D., Syaputra, H., Fatoni & Kurniawan, T. B. (2023). Metode Klasifikasi Gejala Penyakit Coronavirus Disease 19 (COVID-19) Menggunakan Algoritma Neural Network. Sistem Informasi Dan Komputer), 12(1), 16–23. https://doi.org/10.32736/sisfokom.v12i1.1406

Argina, A. M. (2020). Penerapan Metode Klasifikasi K-Nearest Neigbor pada Dataset Penderita Penyakit Diabetes. Indonesian Journal of Data and Science, 1(2), 29–33. https://doi.org/10.33096/ijodas.v1i2.11

Arif, M. Z., Ahmed, R., Sadia, U. H., Tultul, M. S. I., & Chakma, R. (2020). Decision Tree Method Using for Fetal State Classification from Cardiotography Data. Journal of Advanced Engineering and Computation, 4(1), 64-73. https://doi.org/10.25073/jaec.202041.273

Atthalla, I. N., Jovandy, A., & Habibie, H. (2018). Klasifikasi Penyakit Kanker Payudara Menggunakan Metode K Nearest Neighbor. Prosiding Annual Research Seminar, 4(1), 148-151.

Handayani, F., Sari Kusuma, K., Leoni Asbudi, H., Guines Purnasiwi, R., Kusuma, R., Sunyoto, A., & Mega Pradnya, W. (2021). JEPIN (Jurnal Edukasi dan Penelitian Informatika) Komparasi Support Vector Machine, Logistic Regression Dan Artificial Neural Network dalam Prediksi Penyakit Jantung. 7(3), 329–334.

Perdana, A., Hermawan, A., & Avianto, D. (2023). Analyze Important Features of PIMA Indian Database For Diabetes Prediction Using KNN. Jurnal Sisfokom (Sistem Informasi Dan Komputer), 12(1), 70–75. https://doi.org/10.32736/sisfokom.v12i1.1598

Putra, P. D., & Rini, D. P. (2019). Prediksi Penyakit Jantung dengan Algoritma Klasifikasi. Prosiding Annual Research Seminar 2019, 5(1), 978–979.

Rahmayanti, N., Pradani, H., Pahlawan, M., & Vinarti, R. (2021). Comparison of machine learning algorithms to classify fetal health using cardiotocogram data. Procedia Computer Science, 197(2021), 162–171. https://doi.org/10.1016/j.procs.2021.12.130

Rian Santoso, M., & Musa, P. (2021). Rekomendasi Kesehatan Janin Dengan Penerapan Algoritma C5.0 Menggunakan Classifying Cardiotocography Dataset. 9(2), 65-76.

Safaat, M., Sahari, A., & Lusiyanti, D. (2020). Implementasi Metode K-Nearest Neighbor Untuk Mengklasifikasi Jenis Penyakit Katarak. Jurnal Ilmiah Matematika Dan Terapan, 17(1), 92–99. https://doi.org/10.22487/2540766x.2020.v17.i1.15184

Saputro, I. W., & Sari, B. W. (2020). Uji Performa Algoritma Naïve Bayes untuk Prediksi Masa Studi Mahasiswa. Creative Information Technology Journal, 6(1), 1-11.https://doi.org/10.24076/citec.2019v6i1.178

Sulastri, S., Hadiono, K., & Anwar, M. T. (2020). Analisis Perbandingan Klasifikasi Prediksi Penyakit Hepatitis Dengan Menggunakan Algoritma K-Nearest Neighbor, Naïve Bayes Dan Neural Network. Dinamik, 24(2), 82–91. https://doi.org/10.35315/dinamik.v24i2.7867

Sulihati, I., Syukur, A., & Marjuni, A. (2022). Deteksi Kesehatan Janin Menggunakan Decision Tree dan Feature Forward Selection. Building of Informatics, Technology and Science (BITS), 4(3), 1658-1664. https://doi.org/10.47065/bits.v4i3.2672

Yuli Mardi. (2019). Data Mining : Klasifikasi Menggunakan Algoritma C4.5. Jurnal Edik Informatika. Jurnal Edik Informatika, 2(2), 213–219.

DOI: http://dx.doi.org/10.32493/jtsi.v6i3.31548


  • There are currently no refbacks.

Copyright (c) 2023 Aprindita Dwi Monica, Sulastri

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Jurnal Teknologi Sistem Informasi dan Aplikasi (ISSN: 2654-3788 e-ISSN: 2654-4229

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License