Effect of Cold Plasma Treatment on Physical Properties of Multilayer Plastics for Polymer Asphalt Applications

Dimas Agung Setiaji, Mochamad Chalid, Tomy Abuzairi, Maurice Efroza, Adam Febriyanto Nugraha


Multilayer plastic waste continues to increase due to the ever-growing consumption and needs of the global citizen and is one of the most challenging types of waste to recycling because of its nature. The accumulation and indiscriminate disposal of waste can pose a potential risk of environmental problems. A solution that can be implemented is to mix bitumen and waste polymer as asphalt manufacturing. Despite its advancement in research, many potential parameters are still to be discovered to achieve optimal results. Through cold plasma treatment, a surface treatment may occur at the multilayer polypropylene that causes the change from hydrophobic to hydrophilic properties. Treating the polymer with cold plasma will provide good hydrophilic properties without changing the overall chemical and thermal properties of the sample. This will result in an alternative aggregate for the bitumen for asphalt manufacturing. Bitumen coupled with the addition of plastic still provides an optimal hardness and ductility, meanwhile having a more economically viable manufacturing process than other processes.


Multilayer Plastic, Bitumen, Cold Plasma, Modified Bitumen, Hydrophilic Surface

Full Text:



[1] R. Geyer, J. R. Jambeck and K. L. Law, "Production, use, and fate of all plastics ever made.," Science Advances, vol. 3, no. 7, 2017.

[2] J. R. Jambeck, R. Geyer, C. Wilcox, T. R. Siegler, M. Perryman, A. Andrady, R. Narayan and K. L. Law, "Plastic waste inputs from land into the ocean," Science, vol. 347, no. 6223, pp. 768-771, 2015.

[3] L. C. Lebreton, J. van der Zwet, J.-W. Damsteeg, B. Slat, A. Andrady and J. Reisser, "River plastic emissions to the world's oceans," Nature Communications, vol. 8, 2017.

[4] I. G. Shuker and C. A. Cadman, "Indonesia - Marine Debris Hotspot Rapid Assessment: Synthesis Report," ALNAP, London, 2018.

[5] Entegris, "Advantages of single-layer film vs. multilayer film for use in bio-processing bags," Entegris, 2018.

[6] E. Saeni, "Kisah di balik uji coba aspal multilayer," Asosiasi Daur Ulang Plastik Indonesia, 2020.

[7] National Cooperative Highway Research Program, "A manual for design of how mix asphalt with commentary," Transportation Research Board, Washington, DC, 2011.

[8] G. Polacco, J. Stastna, D. Biondi and L. Zanzotto, "Relation between polymer architecture and nonlinear viscoelastic behavior of modified asphalts," Current Opinion in Colloid & Interface Science, vol. 11, no. 4, pp. 230-245, 2006.

[9] E. Yuanita, B. E. Hendrasetyawan, D. F. Firdaus and M. Chalid, "Improvement of polypropylene (PP)- modified bitumen through lignin addition," IOP Conference Series: Materials Science and Engineering, vol. 223, no. 1, 2017.

[10] Y. Becker, M. P. Méndez and Y. Rodríguez, "Polymer Modified Asphalt," Vision Tecnologica, vol. 9, no. 1, 2001.

[11] N. L. E. Setyarini, A. N. Tajudin and J. Pratama, "Karakteristik Marshall Lapisan Aus Aspal Beton menggunakan Agregat Terselimut Limbah Plastik LDPE (Low Density Polyethylene)," Jurnal Muara Sains, Teknologi, Kedokteran, dan Ilmu Kesehatan, vol. 3, no. 1, pp. 123-136, 2019.

[12] Kementrian Perencanaan Pembangunan Nasional, "Rancangan teknokratik: Rencana pembangunan jangka menengah nasional, 2020-2024: Indonesia berpenghasilan menengah-tinggi yang sejahtera, adil, dan berkesinambungan," Jakarta, 2020.

[13] M. H. Azhar, Pengaruh Temperatur Pengadukan dan Penambahan Lignin sebagai Compatibilizer Terhadap Polymer Modified Bitumen Berbasis Limbah Plastik Multilayer Polipropilena dan Oriented Polypropylene, Depok: Universitas Indonesia, 2020.

[14] Kementrian Pekerjaan Umum dan Perumahan Rakyat, "Penerapan Skala Penuh Teknologi Aspal Limbah Plastik," Balitbang dan BBPJN VIII, Surabaya, 2017.

[15] Sumiati, Mahmuda and A. Syapawi, "Perkerasan Aspal Beton (AC-BC) Limbah Plastik HDPE yang Tahan Terhadap Cuaca Ekstrem," Construction and Material Journal, vol. 1, no. 1, 2019.

[16] F. E. Lapian, M. I. Ramli, M. Pasra dan A. Arsyad, "Pengaruh Limbah Plastik PET (Polyethylene Terephthalate) terhadap Nilai Kadar Aspal Optimum Campuran AC-WC," Prosiding Konferensi Nasional Pascasarjana Teknik Sipil (KNPTS) X: Adaptasi dan Mitigasi Bencana dalam Mewujudkan Infrastruktur yang Berkelanjutan, 2019.

[17] Q. Ling, "Packaging of Noodle Products," Asian Noodles: Science, Technology, and Processing, pp. 155- 181, 2010.

[18] F. Podczeck, Investigations into the reduction of powder adhesion to stainless steel surfaces by surface modification to aid capsule filling, Int. J. of Pharmaceutics, vol. 178, pp. 93, 1999.

[19] H. Dong dan T. Bell, State-of-the-art overview: ion beam surface modification of polymers towards improving tribological properties, Surf. Coat. Technol., vol. 111, pp. 29, 1999.

[20] H. Iwate, A. Kishida, M. Suzuki, Y. Hata, dan Y. Ikada, Oxidation of polyethylene surface by corona discharge and the subsequent graft polymerization, J. Appl. Polym. Sci., Part A. Polym. 135 Chem., vol. 26, pp. 3309, 1988.

[21] Y. Uyama, M. Tadokoro, Surface lubrication of polymer films by photoinduced graft polymerization, J. Appl. Polym. Sci., vol. 39, pp. 489, 1990.

[22] I. Gancarz, J. Bryjak, M. Bryjak, G. Pozniak, and W. Tylus, Plasma modified polymers as a support for enzyme immobilization 1.: Allyl alcohol plasma, European Polymer J., vol. 39, pp. 1615–1622, 2003.

[23] S. Yang, and M.C.Gupta, Surface modification of polyethyleneterephthalate by an atmosphericpressure plasma source, Surface & Coatings Tech., vol. 187, pp. 172–176, 2004.

[24] S.-W. Ha, R. Hauert, and K.-H. Ernst, Surface analysis of chemically-etched and plasma-treated polyetheretherketone (PEEK) for biomedical applications, Surface and Coatings Tech., vol. 96, pp. 293– 299, 1997.

[25] T. McNally, Polymer modified bitumen. Oxford: WP, Woodhead Publ, 2011.

[26] M. Holý, and E. Remišová, Analysis of influence of bitumen composition on the properties represented by empirical and viscosity test. Transportation Research Procedia, 40, pp. 34-41, 2019.

[27] K.G.Kostova, T.M.C. Nishimea, A.H.R.Castroa, A.Tothb, and L.R.O.Hein. "Surface modification of polymeric materials by cold atmospheric plasma jet." Applied Surface Science, 367-375, 2014.

[28] C. Matthias Kehrera, A. Rottensteinerb, W. Hartla, D. Jiri Duchoslava, S. Thomasc, and D. Stiftera. "Cold atmospheric pressure plasma treatment for adhesion improvement on polypropylene surface." Surface & Coatings Technology 403, 126389, 2020.

[29] Balitbang dan BBPJN VIII Surabaya Kementerian Pekerjaan Umum dan Perumahan Rakyat, “Ketentuan Limbah Plastik Hasil Cacahan,” in Penerapan Skala Penuh Teknologi Aspal Limbah Plastik, 1st editio., Surabaya, 2017, pp. 10.

[30] A. J. Naindraputra, “Pengaruh Penambahan Limbah Plastik Multilayer Berbasis Polipropilena dan Lignin dengan Variabel Waktu Pengadukan dalam Bitumen Menggunakan Metode Hot Melt Mixing Terhadap Sifat Campuran Polymer Modified Bitumen,” Universitas Indonesia, 2020.

[31] C. S. A. L. Gaol, “Pengaruh Penambahan Limbah Plastik Multilayer dalam Bitumen dengan Variasi Suhu pada Metode Hot Melt Mixing Terhadap Sifat Campuran Polymer Modified Bitumen,” Universitas Indonesia, 2020.

[32] Y. A. Prawira, "Modifikasi Bitumen Dengan Penambahan High Density Polyethylene (HDPE) dan Polypropylene Serta Lignin Melalui Metode Hot Melt Mixing," Universitas Indonesia, 2016.

[33] B. E. Hendrasetyawan, “Limbah Lignin Sebagai Coupling Agent Untuk Modifikasi Bitumen Dan Limbah Polipropilena Dengan Metode Hot Melt Mixing,” Universitas Indonesia, 2016.

[34] R. Syahwalia, “Modifikasi Bitumen dengan Penambahan HDPE atau PP dengan Metode Hot Melt Mixing,” Universitas Indonesia, 2016.

[35] Muthu and R. Elizabeth, "Modified Bitumen from Waste Materials - Rubber Crumb & Low Density Polyethylene," University Teknologi Petronas, 2013.

[36] B. I. O. Dahunsi, O. S. Awogboro, M. Akinpelu, and O. S. Olafusi, "Investigation of the Properties of 'Pure Water' Sachet Modified Bitumen," vol. 3, no. 2, pp. 62, 2013.

[37] F. J. N. Domínguez and M. García-Morales, “The use of waste polymers to modify bitumen,” Polym. Modif. Bitum., pp. 98–135, 2011, doi: 10.1016/B978-0-85709-048-5.50005-5.

[38] H. D. Rozman, K. W. Tan, R. N. Kumar, A. Abubakar, Z. A. Mohd. Ishak, and H. Ismail, "Effect of lignin as a compatibilizer on the physical properties of coconut fiber-polypropylene composites," Eur. Polym. J., vol. 36, no. 7, pp. 1483–1494, 2000, doi: 10.1016/S0014-3057(99)00200-1.

[39] E. Yuanita, B. E. Hendrasetyawan, D. F. Firdaus, and M. Chalid, "Improvement of polypropylene (PP)- modified bitumen through lignin addition," IOP Conf. Ser. Mater. Sci. Eng., vol. 223, no. 1, 2017, doi: 10.1088/1757-899X/223/1/012028.

[40] Sancaktar, Erol and Sunthonpagasit, Nongnard. Surface Modification of Polypropylene for Improved Adhesion. 2004. doi: 10.1201/b12183-17.

DOI: http://dx.doi.org/10.32493/pjte.v6i1.20771


  • There are currently no refbacks.

Copyright (c) 2022 Dimas Agung Setiaji, Mochamad Chalid, Tomy Abuzairi, Maurice Efroza, Adam Febriyanto Nugraha

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Piston: Journal of Technical Engineering

Universitas Pamulang Journal 

P-ISSN 2541-3511 | E-ISSN 2686-2247

Supported By

RJI Main logo