Implementasi Teori Naive Bayes dalam Klasifikasi Ujaran Kebencian di Facebook

Willianto Willianto, Izmy Alwiah Musdar, Junaedy Junaedy, Husni Angriani

Abstract


Hate Speech can be orally or in writing which is expressed intentionally by someone for the purpose of spreading and leading to hatred between groups of people. The phenomenon of Hate Speech has become a hot topic. This is motivated by netizens who often express Hate Speech either in the comments column or in their personal status on social media. The impact of this phenomenon is the emergence of hatred in society which can lead to conflict. The purpose of this study is to implement the Naïve Bayes Theory in the classification of Hate Speech on Facebook. In this study Naïve Bayes is used as a Classfifier. Naïve Bayes method is applied to find the probability of words in documents would be categorized as hate speech or not hate speach. This Classfifier is implemented using Python programming language. In the Classfifier design stage, 500 data are collected randomly on Facebook. Data is divided by 80% - 20% , 400 text data for training and 100 text data for testing. The accuracy for hate speech classification in this study is 83%. These results are obtained from Classfifier evaluations using test data where the Classfifier correctly labels 83 out of 100 test data.


Keywords


Hate Speech Classification; Naïve Bayes

Full Text:

PDF

References


Ahmad, M., Octaviansyah, M. F., & Kardiana, A. (2019). Sentiment Analysis System of Indoneisan Tweets using Lexicon and Naive Bayes Approach. 2019 Fourth International Conference on Informatics and Computing (ICIC), 7–11.

Akella, J. O., & Akella, L. N. Y. (2018). Sentiment Analysis Using Naïve Bayes Algorithm: With Case Study. Proceedings of the 3rd International Conference on Inventive Computation Technologies, ICICT 2018. https://doi.org/10.1109/ICICT43934.2018.9034394

Bird, S., Loper, E., & Klein, E. (2009). Natural Language Processing with Python. O’Reilly Media, Inc.

Cortis, K., & Davis, B. (2021). Over a decade of social opinion mining: a systematic review. Artificial Intelligence Review, 54(7), 4873–4965. https://doi.org/10.1007/s10462-021-10030-2

Elouardighi, A., Maghfour, M., & Hammia, H. (2017). Collecting and processing arabic facebook comments for sentiment analysis. International Conference on Model and Data Engineering, 262–274.

Fanissa, S., Fauzi, M. A., & Adinugroho, S. (2018). Analisis Sentimen Pariwisata di Kota Malang Menggunakan Metode Naive Bayes dan Seleksi Fitur Query Expansion Ranking. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(8), 2766–2770.

Khoo, C. S., & Johnkhan, S. B. (2018). Lexicon-based sentiment analysis: Comparative evaluation of six sentiment lexicons. Journal of Information Science, 44(4), 491–511. https://doi.org/10.1177/0165551517703514

Ligthart, A., Catal, C., & Tekinerdogan, B. (2021). Systematic reviews in sentiment analysis: a tertiary study. Artificial Intelligence Review, 54(6). https://doi.org/10.1007/s10462-021-09973-3

Rahmad, A. N., & Pribadi, F. S. (2015). Pemilihan Feature Dengan Chi Square Dalam Algoritma Naïve Bayes Untuk Klasifikasi Berita. Edu Komputika Journal, 2(1), 13–21. https://doi.org/10.15294/edukomputika.v2i1.7823

Robbani, H. A. (2016). PySastrawi (1.2). https://github.com/har07/PySastrawi

Suryono, S., & Taufiq Luthfi, E. (2018). Analisis sentimen pada Twitter dengan menggunakan metode Naïve Bayes Classifier. Seminar Nasional Geotik, 9–15. https://doi.org/10.36802/jnanaloka.2020.v1-no2-81-86




DOI: http://dx.doi.org/10.32493/informatika.v6i4.12593

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Willianto Willianto, Izmy Alwiah Musdar, Junaedy Junaedy, Husni Angriani

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Jurnal Informatika Universitas Pamulang (ISSN: 2541-1004 e-ISSN: 2622-4615)



This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License