Pengaruh Stemming Nazief & Adriani terhadap Performa Algoritma Rabin-Karp dalam Mendeteksi Kemiripan Teks

Muhamad Arief Yulianto, Nurhasanah Nurhasanah

Abstract


One of the information retrieval methods which be able to search root word of each word in document is stemming. Stemming process is done by eliminate prefixes, infixes, suffixes or confixes. Vega, Tala, Arifin and Setiono, Nazief and Adriani and Tala stemming are kind of Indonesian Language stemming. The method that is able to trace each character in sequence character is fingerprinting. Rabin-Karp algorithm is one of the fingerprinting method algorithms. This algorithm implement has function to process matching text/string, so it is really suitable to implement of text/string similarity detection. Researcher will analyze the effect of Nazief and Adriani stemming method to algorithm of Rabin-Karp performance to identify similarity of text/string. The researcher implemented datasets such as titles, keywords, introductions or abstracts from The Pamulang Informatics Engineering Journal which we had changed the wording. The result of the experiment data which has changed word order randomly that used stemming method has decreased 0.76% than without implemented stemming method. Furthermore, the experiment data which has been changed sentence order randomly has decreased 0.04% too.


Keywords


Analyse; Effect; Rabin-Karp; Similarity; stemming

Full Text:

PDF

References


Bhosale, M. V., & Vankudre, A. A. (2017). Detection of Real-Time Traffic through Twitter Stream Analysis. International Research Journal of Advanced Engineering and Science, 2(2), 124–126.

Christina, S., Oktaviyani, E. D., & Famungkas, B. (2018). Mendeteksi Plagiarism Pada Dokumen Proposal Skripsi Menggunakan Algoritma Jaro Winkler Distance. Jurnal Saintekom, 8(2), 143–153. https://doi.org/https://doi.org/10.33020/saintekom.v8i2.68

Hapsari, R. K., & Santoso, Y. J. (2015). Stemming Artikel Berbahasa Indonesia Dengan Pendekatan Confix-Stripping. Prosiding Seminar Nasional Manajemen Teknologi XXII, 1–8.

Hidayatullah, A. F. (2015). The Influence of Stemming on Indonesian Tweet Sentiment Analysis. Proceeding of the Electrical Engineering Computer Science and Informatics, Vol 2, 127–132. https://doi.org/http://dx.doi.org/10.11591/eecsi.v2.791

KBBI. (2016). http://kbbi.web.id/jiplak

Mardiana, T., Adji, T. B., & Hidayah, I. (2016). Stemming Influence on Similarity Detection of Abstract Written in Indonesia. TELKOMNIKA (Telecommunication Computing Electronics and Control), 14(1), 219–227. https://doi.org/http://dx.doi.org/10.12928/telkomnika.v14i1.1926

Nugroho, H. T. (2017). Pengaruh Algoritma Stemming Nazief-Adriani Terhadap Kinerja Algoritma Winnowing Untuk Mendeteksi Plagiarisme Bahasa Indonesia. Ultima Computing : Jurnal Sistem Komputer, 9(1), 36–40. https://doi.org/https://doi.org/10.31937/sk.v9i1.572

Prihatini, P. M., Putra, I. D., Giriantari, I., & Sudarma, M. (2017). Stemming Algorithm for Indonesian Digital News Text Processing. International Journal of Engineering and Emerging Technology, 2(2), 1–7.

Purba, A. H., & Situmorang, Z. (2017). Analisis Perbandingan Algoritma Rabin-Karp Dan Levenshtein Distance Dalam Menghitung Kemiripan Teks. Jurnal Teknik Informatika UNIKA Santo Thomas, 2(2), 24–32. https://doi.org/https://doi.org/10.17605/jti.v2i2.187

Putra, D. A., & Sujaini, H. (2016). Implementasi Algoritma Rabin-Karp untuk Membantu Pendeteksian Plagiat pada Karya Ilmiah. JUSTIN (Jurnal Sistem Dan Teknologi Informasi), 4(1), 66–74.

Rahimi, M., & Zahedi, M. (2014). Query expansion based on relevance feedback and latent semantic analysis. Journal of AI and Data Mining, 2(1), 79–84. https://doi.org/https://dx.doi.org/10.22044/jadm.2014.188

Rahmaddeni, Sazali, D., & Agustin. (2018). Sistem Pendeteksi Tingkat Kesamaan Teks pada Pengusulan Proposal Penelitian Internal Menggunakan Algoritma Rabin-Karp. SATIN - Sains Dan Teknologi Informasi, 4(2), 84–92. https://doi.org/https://doi.org/10.33372/stn.v4i2.415

Ruban, S. S., Serrao, S. B., & Harshitha, L. V. (2015). A Study and Analysis of Information Retrieval Models. International Journal of Innovative Research in Computer and Communication Engineering, 3(7), 230–236.

Simarangkir, M. S. H. (2017). Studi Perbandingan Algoritma - Algoritma Stemming untuk Dokumen Teks Bahasa Indonesia. Jurnal Inkofar, 1(1), 40–46.

Tala, F. Z. (2004). A Study of Stemming Effects on Information Retrieval in Bahasa Indonesia. Universiteit van Amsterdam The Netherlands.

Verdaningroem, N. J. M., & Saifudin, A. (2018). Penerapan Kamus Dasar pada Algoritma Porter untuk Mengurangi Kesalahan Stemming Bahasa Indonesia. Jurnal Teknologi, 10(2), 103–112. https://doi.org/https://doi.org/10.24853/jurtek.10.2.103-112

Wicaksono, Y. A., & Suyanto. (2012). Analisis dan Implementasi Algoritma Rabin-Karp dan Algoritma Stemming Nazief-Adriani pada Sistem Pendeteksi Plagiat Dokumen Teks Berbahasa Indonesia. Universitas Telkom.

Yulianingsih. (2017). Implementasi Algoritma Jaro-Winkler dan Levenstein Distance dalam Pencarian Data pada Database. STRING (Satuan Tulisan Riset Dan Inovasi Teknologi), 2(1), 18–27. https://doi.org/https://doi.org/10.30998/string.v2i1.1720

Yulianto, M. A., & Nurhasanah, N. (2021). The Hybrid of Jaro-Winkler and Rabin-Karp Algorithm in Detecting Indonesian Text Similarity. Jurnal Online Informatika, 6(1), 88. https://doi.org/10.15575/join.v6i1.640




DOI: http://dx.doi.org/10.32493/informatika.v6i4.16074

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Muhamad Arief Yulianto, Nurhasanah Nurhasanah

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Jurnal Informatika Universitas Pamulang (ISSN: 2541-1004 e-ISSN: 2622-4615)



This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License