Penerapan Teknik Bagging Berbasis Naïve Bayes untuk Seleksi Penerimaan Mahasiswa

Yum Leifita Nursimpati, Aries Saifudin

Abstract


Students who graduate not on time create an imbalanced ratio between lecturers and students. The current selection system is ineffective because it has not been able to detect prospective students who have the possibility of not being able to complete their education on time so that many students who are accepted do not graduate on time and leave without completing their education. This condition causes a decrease in performance of study programs and institutions. The classification algorithm can use for classifying new students as graduate timely or not. Naïve Bayes classification algorithm can use to classify data in certain classes, using the history of alumni of informatics engineering at Pamulang university as training data and prospective student data as test data. Some attributes used to determine which label class to graduate on time and not on time are gender, school majors, year difference, math grades, English, Indonesian. To improve the results of the classification of Naïve Bayes, Bagging (Bootstrap Aggregating) technique is used. From the test results of the alumni dataset, the informatics study program using bagging techniques as an optimization of the Naïve Bayes classification algorithm has a lower failure rate than without using bagging techniques. The results of the calculation of performance data using bagging techniques can increase accuracy by 2.381% and AUC by 1.470% on the student graduation prediction model for new student selection using the Naïve Bayes classification.

Keywords


Bagging; Data Mining; Naïve Bayes; Student Selection

References


Arti, Y. (2009). Penentuan Tingkat Keberhasilan Mahasiswa Tingkat I IPB Menggunakan Induksi Pohon Keputusan dan Bayesian Classifier. IPB journal, 1-37.

Baizal, Z. A., Bijaksana, M. A., & Nasihati, I. R. (2009). Penggunaan Metode Bagging Dengan Menerapkan Data Balancing Pada Churn Prediction Untuk Perusahaan Telekomunikasi. Aplikasi Teknologi Komunikasi, 134-139.

BAN-PT. (2011). Akreditasi Institusi Perguruan Tinggi - Buku II Standar dan Presedur. Jakarta.

Bustami. (2013). Penerapan Algoritma Naive Bayes Untuk Mengklasifikasi Data Nasabah Asuransi. TECHSI:Jurnal Penelitian Teknik Informatika, 128-146.

Hastuti, K. (2012). Analisis Komparasi Algoritma Klasifikasi Data Mining untuk Prediksi Mahasiswa Non Aktif. Prosiding Semantik (pp. 241-249). Semarang: Universitas Dian Nuswantoro.

Kusrini, & Luthfi, E. T. (2009). Algoritma Data Mining. Yogyakarta: Andi Publisher.

Mujib, R., Suyono, H., & Sarosa, M. (2013). Penerapan Data Mining untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier. Jurnal EECCIS (Electrics, Electronics, Communications, Controls, Informatics, Systems), 7(1), 59-64.

Mulyati, S., Yulianti, Y., & Saifudin, A. (2017). Penerapan Resampling dan Adaboost untuk Penanganan Masalah Ketidakseimbangan Kelas Berbasis Na?ve Bayes pada Prediksi Churn Pelanggan. Jurnal Informatika Universitas Pamulang, 2(4), 190-199.

Nuha, M. U., Arieshanti, I., & Purwananto, Y. (2012). Pengembangan Perangkat Lunak Prediktor Kebangkrutan Menggunakan Metode Bagging Nearest Neighbor Support Vector Machine. Jurnal Teknik POMITS, 1(1), 1-6.

Saifudin, A. (2018). Metode Data Mining untuk Seleksi Calon Mahasiswa pada Penerimaan Mahasiswa Baru di Universitas Pamulang. Jurnal Teknologi, 10(1), 25-36.

Saifudin, A., & Wahono, R. S. (2015). Penerapan Teknik Ensemble untuk Menangani Ketidakseimbangan Kelas pada Prediksi Cacat Software. Journal of Software Engineering, 1(1), 28-37.

Salim, Y. (2012). Penerapan Algoritma Naive Bayes untuk Penentuan Status Turn-Over Pegawai. Media Sains, 4(2), 196-205.

Sun, Y., Kamel, M. S., Wong, A. K., & Wang, Y. (2007). AdaCost : Misclassification Cost-Sensitive Boosting. Pattern Recognition 40, 3358-3378.

Tan, P.-N., Steinbach, M., & Kumar, V. (2014). Introduction to Data Mining. Essex: Pearson Education Limited.

Ting, K. M., & Zheng, Z. (2003). A Study Of AdaBoost With Naive Bayesian Classifiers : Weakness and Improvement. Computational Intelligence, Volume 19, Number 2, 186-199.

Turban, E., Aronson, J. E., & Liang, T. P. (2007). Decision Support Systems and Intelligent Systems (7 ed.). Yogyakarta: Andi Publisher.

Wicaksono, S. A., Oranova S, D., & Sawosri. (2010). Pembangunan Model Prediksi Defect Menggunakan Metode Ensemble Decision Tree dan Cost Sensitive Learning. Jurnal EECCIS Vol.IV No.1, 1-7.

Wirayuda, T. A., Hidayat, D., & Shaufiah. (2010). Analisis Dan Implementasi Metode Bootstrap Aggregating (Bagging) Pada Model Artificial Neural Network Dengan Studi Kasus Klasifikasi Penanganan Tindak Lanjut Pasien Unit Gawat Darurat. posiding ITT, 1-9.

Yulianti. (2018). Metode Data mining Untuk prediksi Churn Pelanggan. Jurnal ICT Akademi Telkom Jakarta, 9(16), 46-52.

Zhang, H., & Su, J. (2006). Learning Probabilistic Decision Trees For AUC. Pattern Recognition Letters 27, 892-899.




DOI: http://dx.doi.org/10.32493/informatika.v4i2.3235

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Yum Leifita Nursimpati, Aries Saifudin

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Jurnal Informatika Universitas Pamulang (ISSN: 2541-1004 e-ISSN: 2622-4615)

Copyright © 2016-2020 Program Studi Teknik Informatika Universitas Pamulang. All rights reserved.



This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License