Klasifikasi Rating Otomatis pada Dokumen Teks Ulasan Produk Elektronik Menggunakan Metode N-gram dan Naïve Bayes
Abstract
Keywords
Full Text:
PDFReferences
Agastya, I. M. A. (2018). Pengaruh Stemmer Bahasa Indonesia Terhadap Peforma Analisis Sentimen Terjemahan Ulasan Film. Jurnal Tekno Kompak, 12(1), 18. https://doi.org/10.33365/jtk.v12i1.70
AL-Smadi, M., Jaradat, Z., AL-Ayyoub, M., & Jararweh, Y. (2017). Paraphrase identification and semantic text similarity analysis in Arabic news tweets using lexical, syntactic, and semantic features. Information Processing & Management, 53(3), 640–652. https://doi.org/10.1016/j.ipm.2017.01.002
Deolika, A., Kusrini, K., & Luthfi, E. T. (2019). Analisis Pembobotan Kata Pada Klasifikasi Text Mining. Jurnal Teknologi Informasi, 3(2), 179. https://doi.org/10.36294/jurti.v3i2.1077
Dhande, L. L., & Patnaik, P. G. K. (2014). Analyzing Sentiment of Movie Review Data using Naive Bayes Neural Classifier. International Journal of Emerging Trends & Technology in Computer Science (IJETTCS), 3(4), 313–320. Diambil dari www.ijettcs.org
Di Nunzio, G. M. (2014). A new decision to take for cost-sensitive Naïve Bayes classifiers. Information Processing & Management, 50(5), 653–674. https://doi.org/10.1016/j.ipm.2014.04.008
Farki, A., Baihaqi, I., & Wibawa, M. (2016). Pengaruh online customer review rating terhadap kepercayaan place di indonesia. Jurnal Teknik ITS, 5(2), A614–A619.
García Adeva, J. J., Pikatza Atxa, J. M., Ubeda Carrillo, M., & Ansuategi Zengotitabengoa, E. (2014). Automatic text classification to support systematic reviews in medicine. Expert Systems with Applications, 41(4), 1498–1508. https://doi.org/10.1016/j.eswa.2013.08.047
Haq, F. I. N., & Budi, E. (2019). Implementasi Naive Bayes Classifier untuk Prediksi Kepribadian Big Five pada Twitter Menggunakan Term Frequency-Inverse Document Frequency ( TF-IDF ) dan Term Frequency-Relevance Frequency ( TF-RF ) Program Studi Sarjana Ilmu Komputasi Fakultas Informatik. e-Proceeding of Engineering, 6(2), 9785–9795.
Harahap, D. A. (2018). Perilaku Belanja Online Di Indonesia: Studi Kasus. JRMSI - Jurnal Riset Manajemen Sains Indonesia, 9(2), 193–213. https://doi.org/10.21009/jrmsi.009.2.02
Hardilawati, W. L. (2020). Jurnal Akuntansi & Ekonomika. Jurnal Akuntansi & Ekonomika, 10(1), 89–98. Diambil dari http://ejurnal.umri.ac.id/index.php/jae
Lidya, S. K., Sitompul, O. S., & Efendi, S. (2015). Sentiment Analysis Pada Teks Bahasa Indonesia Menggunakan Support Vector Machine ( Svm ). Seminar Nasional Teknologi dan Komunikasi 2015, 2015(Sentika), 1–8.
Prasanti, A. A., Fauzi, M. A., & Furqon, M. T. (2018). Klasifikasi Teks Pengaduan Pada Sambat Online Menggunakan Metode N- Gram dan Neighbor Weighted K-Nearest Neighbor ( NW-KNN ). Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya, 2(2), 594–601.
Pujadayanti, I., Fauzi, M. A., & Sari, Y. A. (2018). Prediksi Rating Otomatis pada Ulasan Produk Kecantikan dengan Metode Naïve Bayes dan N-gram. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer (J-PTIIK), 2(11), 4421–4427.
Santoso, H. A., Rachmawanto, E. H., Nugraha, A., Nugroho, A. A., Setiadi, D. R. I. M., & Basuki, R. S. (2020). Hoax classification and sentiment analysis of Indonesian news using Naive Bayes optimization. Telkomnika (Telecommunication Computing Electronics and Control), 18(2), 799–806. https://doi.org/10.12928/TELKOMNIKA.V18I2.14744
Sapuhtra, B. D., Fauzi, M. A., & Rahayudi, B. (2019). Prediksi Rating Pada Review Produk Kecantikan Menggunakan Metode Semantic Orientation Calculator dan Regresi Linier. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 3(5), 4477–4483.
Saputri, M. S., Mahendra, R., & Adriani, M. (2019). Emotion Classification on Indonesian Twitter Dataset. Proceedings of the 2018 International Conference on Asian Language Processing, IALP 2018, 90–95. IEEE. https://doi.org/10.1109/IALP.2018.8629262
Setyaji, M., Zidny, M., Prabowo, W. A., & Hertantyo, G. B. (2018). Naive Bayes dengan Ekstraksi Fitur N-gram dalam Mendeteksi Spam Ulasan Bahasa Indonesia. Proceedings on Conference on Electrical Engineering, Telematics, Industrial Technology, and Creative Media, 56–60.
Sheela, S. P. (2018). Sentiment Analysis and Prediction of Online Reviews with Empty Ratings. International Journal of Applied Engineering Research, 13(14), 11532–11539.
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing and Management, 45(4), 427–437. https://doi.org/10.1016/j.ipm.2009.03.002
Trstenjak, B., Mikac, S., & Donko, D. (2014). KNN with TF-IDF based framework for text categorization. Procedia Engineering, 69, 1356–1364. Elsevier B.V. https://doi.org/10.1016/j.proeng.2014.03.129
Wahono, R. S., Herman, N. S., & Ahmad, S. (2014). A comparison framework of classification models for software defect prediction. Advanced Science Letters, 20(10–12), 1945–1950. https://doi.org/10.1166/asl.2014.5640
DOI: http://dx.doi.org/10.32493/informatika.v5i3.6110
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Rahmawan Bagus Trianto, Andri Triyono, Dhika Malita Puspita Arum

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Jurnal Informatika Universitas Pamulang (ISSN: 2541-1004 e-ISSN: 2622-4615)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License