Implementasi Deep Learning Menggunakan Metode CNN dan LSTM untuk Menentukan Berita Palsu dalam Bahasa Indonesia
Abstract
Keywords
Full Text:
PDFReferences
Ananth, S., Radha, D. K., Prema, S., D., & Nirajan, K. (2019). Fake News Detection using Convolution Neural Network in Deep Learning. International Journal Of Innovative Research In Computer And Communication Engineering, 7(1).
CNNIndonesia. (2018a, October 1). VIDEO: Warga Panik Akibat Hoaks Gempa-Tsunami di Sulbar. https://www.cnnindonesia.com/nasional/20181001165424-24-334695/video-warga-panik-akibat-hoaks-gempa-tsunami-di-sulbar
CNNIndonesia, R. (2018b, June 23). Upaya Negara Perangi Penyebaran Berita Palsu. https://www.cnnindonesia.com/teknologi/20180623085115-185-308291/upaya-negara-perangi-penyebaran-berita-palsu
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. In MIT Press. MIT Press. https://www.deeplearningbook.org/
Haryalesmana, D. (2016). ID-Stopwords/id.stopwords.02.01.2016.txt at master · masdevid/ID-Stopwords · GitHub. https://github.com/masdevid/ID-stopwords/blob/master/id.stopwords.02.01.2016.txt
Hasil Survey Wabah HOAX Nasional 2019 | Website Masyarakat Telematika Indonesia. (2019). https://mastel.id/hasil-survey-wabah-hoax-nasional-2019/
Hossin, M., & Sulaiman, M. N. (2015). A Review on Evaluation Metrics for Data Classification Evaluations. International Journal of Data Mining & Knowledge Management Process. https://doi.org/10.5121/ijdkp.2015.5201
Kementerian Komunikasi dan Informatika. (2020, February 15). https://www.kominfo.go.id/content/detail/24415/hoaks-satu-warga-di-toraja-utara-terjangkit-virus-corona/0/laporan_isu_hoaks
Li, Y., & Yang, T. (2017). Word Embedding for Understanding Natural Language: A Survey (Vol. 26). https://doi.org/10.1007/978-3-319-53817-4
Mediani, M. (2017, August 28). Saracen: Bisnis Hoax Hancurkan Lawan Politik. https://www.cnnindonesia.com/nasional/20170828063335-32-237676/saracen-bisnis-hoax-hancurkan-lawan-politik
Putri, T. T. A., S, H. W., Sitepu, I. Y., Sihombing, M., & Silvi. (2019). Analysis and Detection of Hoax Contents in Indonesian News Based on Machine Learning. Journal Of Informatics Pelita Nusantara.
Rahutomo, F., Pratiwi, I. Y. R., & Ramadhani, D. M. (2019). Eksperimen Naïve Bayes Pada Deteksi Berita Hoax Berbahasa Indonesia. JURNAL PENELITIAN KOMUNIKASI DAN OPINI PUBLIK. https://doi.org/10.33299/jpkop.23.1.1805
Tentang Kami - TurnBackHoax. (2016). https://turnbackhoax.id/tentang-kami/
Verma, P., & Khandelwal, B. (2019). Word embeddings and its application in deep learning. International Journal of Innovative Technology and Exploring Engineering. https://doi.org/10.35940/ijitee.K1343.0981119
Zheng, A. (2015). Evaluating Machine Learning Models - O’Reilly Media. In Oreilly.
DOI: http://dx.doi.org/10.32493/informatika.v5i4.6760
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Antonius Angga Kurniawan, Metty Mustikasari

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Jurnal Informatika Universitas Pamulang (ISSN: 2541-1004 e-ISSN: 2622-4615)
Copyright © 2016-2020 Program Studi Teknik Informatika Universitas Pamulang. All rights reserved.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License