BENEISH M-SCORE MODELS TO DETECT FINANCIAL FRAUD CASE

STUDY OF CUSTOMER GOODS COMPANIES LISTED ON IDX

Authors

  • Khairunnisa Khairunnisa Bumigora University
  • Defel Septian Bumigora University
  • Vina Febrianti Bumigora University

DOI:

https://doi.org/10.32493/ebic.v2i1.51455

Keywords:

Beneish M-Score, Customer Goods, Fraud, Grey Company, Manipulator, Non Manipulator

Abstract

This study aims to determine companies classified as manipulators, nanomanipulators and gray companies Customer Goods companies listed on the Indonesia Stock Exchange. The population in this study were 20 Customer Goods companies listed on the Indonesia Stock Exchange for the period 2019 to 2023. The sampling technique used purposive sampling.  The data collection method uses the documentation method. Data analysis using the Beneish M-Score Method which consists of 8 variables, namely Days Sales In Receivables Index (DSRI), Gross Margin Index (GMI), Asset Quality Index (AQI), Sales Growth Index (SGI), Depreciation Index (DEPI), Sales General and Administrative Expense (SGAI), Leverage Index (LVGI) and Total Accrual to Total Assets Index (TATA). Based on the results of the study, it shows that the DSRI variable is classified as a manipulator of 15%, gray company 20%, and non-manipulator 65%. GMI is classified as a 12% manipulator, 18% gray company, and 70% non-manipulator. AQI is classified as a manipulator 22%, gray company 28%, and non-manipulator 50%. SGI is classified as a 7% manipulator, 24% gray company and 69% non-manipulator. SGAI is classified as a 32% manipulator, 0% gray company, and 68% non-manipulator. LVGI is classified as a 30% manipulator, 15% gray company, and 55% non-manipulator. TATA is classified as an 11% manipulator, 2% gray company, and 87% non-manipulator.

References

ACFE, I. (2019). ACFE 2019.

Agus Irianto. (2015). Statistik (Konsep Dasar, Aplikasi dan Pengembangannya). Jakarta : Kencana.

Anjani, L. (2019). Teori Fraud Triangle dan Corporate Governance Sebagai Pendeteksi Kecurangan Laporan Keuangan. Skripsi. Lampung: Fakultas Ekonomi Dan Bisinis Informatika Dan Bisnis Darmajaya Bandar Lampung., 01(01), 1689– 1699.

Ansori, M. & Salmu Fajri, S. (2018). ‘Pendeteksi Kecurangan Laporan Keuangan Menggunakan Rasio Keuangan Dengan Umur Perusahaan Dan Ukuran Perusahaan Sebagai Variable Kontrol’. Journal of Applied Managerial Accounting, 2(2), pp. 141-159.

Aprilia, A. (2017). Analisis Pengaruh Fraud Pentagon Terhadap Kecurangan Laporan Keuangan Menggunakan Beneish Model Pada Perusahaan Yang Menerapkan Asean Corporate Governance Scorecard. Jurnal ASET (Akuntansi Riset), 9(1), 101. https://doi.org/10.17509/jaset.v9i1.5259

AyemS., WardaniD.K. and Mas’adahL. 2022. Pengaruh Fraud Pentagon terhadap Fraudulent Financial Statement dengan Komite Audit sebagai Variabel Moderasi. Al-Kharaj : Jurnal Ekonomi, Keuangan & Bisnis Syariah. 5, 2 (Aug. 2022), 824-842. DOI:https://doi.org/10.47467/alkharaj.v5i2.1244.

Beneish, M. D. (1999). The Detection of Earnings Manipulation. Financial Analysts Journal, 55(5), 24–36.

Patmawati, P., & Rahmawati, M. (2023). Deteksi Financial Statement Fraud : Model Beneish M-Score, dan Model F-Score. E-Jurnal Akuntansi, 33(1), 34. Fakultas Ekonomi. Univiersitas Sriwijaya.

Purnawati, S. (2018). Deteksi Fraudulent Financial Reporting dengan Menggunakan Beneish Ratio Index dan Predicting Financial Stress dengan Altman Z Score (Studi Empiris pada Perusahaan yang Melakukan Penawaran Saham Perdana (IPO) di Bursa Efek Indonesia Tahun 2013-2015).

Santoso, N. T., & Surenggono. (2018). Predicting Financial Statement Fraud with Fraud Diamond Model of Manufacturing Companies Listed in Indonesia. State-of-the-Art Theories and Empirical Evidence, 151– 163. https://doi.org/10.1007/978-981-10-6926-0_9

Septian, D., & Gunawan, R. (2024). -Analisis Indikasi Kecurangan Laporan Keuangan Menggunakan Model Beneish M-Score pada Perusahaan Property dan Real Estate. Jurnal Penelitian Ekonomi Akuntansi (JENSI), 8(1), 38-53.

Sholikhah, A. (2016). Statistik deskriptif dalam penelitian kualitatif. KOMUNIKA: Jurnal Dakwah Dan Komunikasi, 10(2), 342-362.

Sihombing, K. S., & Rahardjo, S. N. (2014). Analisis Fraud Diamond Dalam Mendeteksi Financial Statement Fraud : Studi Empiris Pada Perusahaan Manufaktur Yang Terdaftar Di Bursa Efek Indonesia (Bei) Tahun 2010-2012. DIPONEGORO JOURNAL OF ACCOUNTING, 3(2), 657–668.

Skousen, C. J. et al. (2009). Detecting and predecting Financial Statement Fraud. the effectiveness of the fraud triangle and SAS no.99 Corporate Governance and firm Performance.

Sugiyono. (2018). Metode Penelitian Kombinasi (Mixed Methods). Bandung: CV Alfabeta.

Wells, J. T. (2001). Irrational Ratios. Journal of Accountancy, 80–84.

Wolfe, D. T., & Hermanson, D. R. (2004). The FWolfe, D. T. and Hermanson, D. R. (2004) „The Fraud Diamond : Considering the Four Elements of Fraud: Certified Public Accountant‟, The CPA Journal, 74(12), pp. 38–42. doi: DOI:raud Diamond : Considering the Four ElemWolfe, D. T. and Hermanson, D. R. The CPA Journal, 74(12), 38–42.

Downloads

Published

2025-06-30