DETEKSI DAN TRACKING PERGERAKAN MOBIL DI VIDEO
LALU LINTAS MENGGUNAKAN OPENCV DAN PHYTON

Bagus Riyadi Fitra',Genta Aprilian?, Reza Rifaldy Pratama®
.23 Program Studi Sistem Informasi
Fakultas limu Komputer, Universitas Pamulang,
JI. Raya Puspitek, Buaran, Kec. Pamulang, Kota Tangerang Selatan, Banten 156310

E-mail baqus.riyadi555@gmail.com’, gntaprin@gmail.com?,rezarifaldy111@gmail.com?®

ABSTRAK

DETEKSI DAN TRACKING PERGERAKAN MOBIL DI VIDEO LALU LINTAS MENGGUNAKAN
OPENCV DAN PHYTON. Penelitian ini mengembangkan sistem deteksi pergerakan mobil berbasis OpenCV
dan Python untuk mendukung pemantauan lalu lintas secara waktu nyata (real-time). Metode yang digunakan
meliputi prapemrosesan citra, deteksi objek dengan algoritma background subtraction (MOG2 dan KNN),
pelacakan menggunakan centroid tracking, serta klasifikasi kondisi lalu lintas menjadi tiga kategori: lancar,
padat, dan macet. Evaluasi kinerja dilakukan berdasarkan akurasi deteksi, frame per second (FPS), dan
pengujian berdasarkan pencahayaan. Hasil pengujian menunjukkan bahwa sistem mampu mencapai akurasi
94% pada siang hari, 88% pada malam hari, dan 80% pada kondisi hujan, dengan rata-rata FPS berkisar
antara 18-32 tergantung resolusi video. Temuan ini membuktikan bahwa pendekatan berbasis OpenCV dapat
diimplementasikan secara efektif untuk mendukung sistem transportasi cerdas dan pemantauan lalu lintas
yang efisien.

Kata kunci: Deteksi Objek, OpenCV, Python, Pemantauan Lalu Lintas.

ABSTRACT

CAR MOVEMENT DETECTION AND TRACKING IN TRAFFIC VIDEO USING OPENCV AND PHYTON.
This study develops a car movement detection system based on OpenCV and Python to support real-time
traffic monitoring. The methods used include image preprocessing, object detection using background
Subtraction algorithms (MOG2 and KNN), tracking using centroid tracking, and classification of traffic conditions
into three categories: smooth, congested, and jammed. Performance evaluation was conducted based on
detection accuracy, frames per second (FPS), and lighting-based testing. Test results showed that the system
achieved 94% accuracy during the day, 88% at night, and 80% in rainy conditions, with an average FPS ranging
from 18-32 depending on the video resolution. These findings demonstrate that the OpenCV-based approach
can be effectively implemented to support intelligent transportation systems and efficient traffic monitoring.

Keywords: Object Detection, OpenCV, Python, Traffic Monitoring.

1. PENDAHULUAN

learning seperti YOLO terbukti krusial
dalam mendeteksi dan melacak kendaraan
secara berkelanjutan [2]. Perkembangan
teknologi Computer Vision dan pemanfaatan
perangkat edge kecerdasan buatan (Al) dalam
lima tahun terakhir seperti NVIDIA Jetson
Nano juga memungkinkan membawa
perubahan signifikan, khususnya di sistem
dijalankan langsung di lokasi dengan bidang

transportasi cerdas. Salah satu aplikasinya
adalah sistem deteksi pergerakan mobil yang
memungkinkan pengawasan dan pengelolaan
lalu lintas secara real-time untuk memantau
jumlah kendaraan, melacak pergerakan, serta
mendeteksi potensi kecelakaan [1]. Salah satu
aplikasinya efisiensi tinggi [3].

I 299 | Jurnal E-Bisnis, Sistem Informasi, Teknologi Informasi ESIT Vol. XX No. 03 2025

mailto:bagus.riyadi555@gmail.com
mailto:gntaprln@gmail.com
mailto:rezarifaldy111@gmail.com

OpenCV sebagai pustaka pengolahan citra
populer menjadi fondasi utama, dengan
dukungan integrasi Python yang sederhana
namun kuat. Python juga didukung oleh
pustaka lengkap seperti TensorFlow dan
PyTorch, yang mempercepat pengembangan
model Al. Studi sebelumnya menunjukkan
kombinasi YOLOv5 dengan algoritma
DeepSORT mampu mencapai akurasi hingga
95% dalam pelacakan kendaraan. Tren lain
adalah penggunaan UAV (drone) untuk
memperoleh sudut pandang lebih luas [4],
serta penerapan teknik background
subtraction dan optical flow yang dapat
mengurangi false positive [5]. Teknologi ini
bahkan telah diaplikasikan dalam sistem
lampu lalu lintas dinamis berbasis deteksi real-
time.

Berbagai algoritma deteksi objek telah
dikembangkan, salah satunya YOLO (You
Only Look Once) yang unggul karena akurasi
tinggi dan latensi rendah, bahkan pada kondisi
lingkungan kompleks. Versi terbaru seperti
YOLOvVS dan YOLOv6 semakin meningkatkan
performa deteksi [6]. Selain itu, penelitian
terkini banyak memanfaatkan data
augmentation dan transfer learning untuk
meningkatkan kemampuan model mendeteksi
berbagai jenis kendaraan dalam kondisi
berbeda. Tantangan tetap ada pada kualitas
video kendaraan rendah, kondisi cuaca
ekstrem, dan objek bertumpuk [7]. Namun,
dengan semakin murahnya perangkat keras
dan tersedianya perangkat lunak sumber
terbuka, peluang penerapan teknologi ini
semakin luas.

Metode System Development Life Cycle
(SDLC) digunakan dalam penelitian ini untuk

memastikan pengembangan sistem
berlangsung sistematis, mulai dari
perencanaan hingga pemeliharaan. Integrasi
OpenCV dengan deep learning

memungkinkan pemrosesan seperti konversi
warna, deteksi tepi, pengurangan noise, dan
segmentasi objek. Hasil pemrosesan dapat
digunakan untuk klasifikasi, pengenalan pola,
maupun pelacakan objek. Selain itu, OpenCV
juga dapat diintegrasikan dengan model deep
learning modern seperti CNN dan YOLO untuk
meningkatkan akurasi deteksi [10].

Berdasarkan latar belakang tersebut,
penelitian ini bertujuan mengembangkan
sistem deteksi pergerakan mobil berbasis
OpenCV dan Python dengan pemrosesan
video real-time. Sistem diharapkan mampu

mendeteksi dan melacak kendaraan secara
akurat pada berbagai kondisi lingkungan,
sekaligus memberikan informasi berguna bagi
pengelolaan lalu lintas dan pengembangan
smart city. Optimalisasi model berbasis YOLO
dan pemanfaatan perangkat edge diharapkan
menghasilkan sistem yang tidak hanya akurat
tetapi juga efisien dari segi biaya dan sumber
daya [8].

Implementasi OpenCV sangat luas, di
antaranya dalam sistem keamanan (deteksi
gerakan pada CCTV, pengenalan wajah),
kendaraan otonom (deteksi rambu lalu lintas
dan objek jalan), industri manufaktur (inspeksi
kualitas produk), bidang medis (analisis citra
medis), hingga aplikasi augmented reality dan
proyek berbasis Al lainnya.1949.

2. TINJAUAN PUSTAKA
2.1 Deteksi Objek Kendaraan

Deteksi objek kendaraan adalah proses
identifikasi dan penentuan lokasi kendaraan
dalam citra atau video secara otomatis
menggunakan teknologi Computer Vision.
Proses ini mencakup dua tahap utama, yaitu
klasifikasi objek untuk memastikan bahwa
objek termasuk kategori kendaraan, serta
lokalisasi untuk menentukan posisi objek
tersebut melalui bounding box.

Beberapa algoritma yang banyak digunakan di
antaranya Haar Cascade yang berbasis fitur
sederhana, serta YOLO (You Only Look Once)
yang memanfaatkan jaringan saraf dalam
(deep learning) untuk deteksi real-time dengan
akurasi tinggi. Penerapan deteksi objek
kendaraan sangat luas, misalnya dalam
sistem pemantauan lalu lintas, penghitungan
jumlah kendaraan, sistem parkir otomatis,
kendaraan otonom, hingga pengembangan
smart city [9].

Dengan deteksi objek, sistem mampu
mengenali berbagai jenis kendaraan secara
cepat dan tepat, bahkan dalam kondisi
lingkungan kompleks seperti pencahayaan
rendah, cuaca buruk, maupun sudut pandang
kamera yang bervariasi.

2.2 OpenCV

OpenCV (Open Source Computer Vision
Library) merupakan pustaka open source yang
digunakan secara luas dalam bidang
pengolahan citra digital, visi komputer, dan

I 300 | Jurnal E-Bisnis, Sistem Informasi, Teknologi Informasi ESIT Vol. XX No. 03 2025

pembelajaran mesin. Library ini menyediakan
berbagai fungsi untuk membaca, memproses,
menganalisis, dan mengenali objek baik dari
gambar maupun video.

OpenCV mendukung banyak bahasa
pemrograman seperti Python dan C++, serta
dapat berjalan di berbagai platform seperti
Windows, Linux, dan Android.

Proses kerja OpenCV biasanya dimulai dari
pembacaan data visual melalui kamera,
gambar, atau video, kemudian dilanjutkan
dengan tahap pemrosesan seperti konversi
warna, deteksi tepi, pengurangan noise, dan
segmentasi objek. Hasil pemrosesan dapat
digunakan untuk klasifikasi, pengenalan pola,
maupun pelacakan objek.

Selain itu, OpenCV juga dapat diintegrasikan
dengan model deep learning modern seperti
CNN dan YOLO untuk meningkatkan akurasi
deteksi [10]. Implementasi OpenCV sangat
luas, di antaranya dalam sistem keamanan
(deteksi gerakan pada CCTV, pengenalan
wajah), kendaraan otonom (deteksi rambu lalu
lintas dan objek jalan), industri manufaktur
(inspeksi kualitas produk), bidang medis
(analisis citra medis), hingga aplikasi
augmented reality dan proyek berbasis Al
lainnya.1949.

2.3 Pyhton

Python adalah bahasa pemrograman
tingkat tinggi yang dirancang untuk
mempermudah pengembangan perangkat
lunak melalui sintaks sederhana, mudah
dibaca, dan fleksibel. Python mendukung
paradigma pemrograman prosedural,
berorientasi objek, maupun fungsional.
Bahasa ini bersifat interpreted sehingga kode
dapat dijalankan baris demi baris tanpa
kompilasi, serta cross-platform sehingga
kompatibel dengan Windows, Linux, dan
macOS.

Python memiliki ekosistem pustaka dan
framework yang sangat luas, sehingga banyak
digunakan pada analisis data, kecerdasan
buatan, machine learning, hingga
pengembangan aplikasi web. Misalnya,
NumPy untuk komputasi numerik, Pandas
untuk manipulasi data, Matplotlib untuk
visualisasi, OpenCV untuk Computer Vision,
TensorFlow dan PyTorch untuk deep learning,
serta Flask dan Django untuk pengembangan
aplikasi web modern [11].

Ketersediaan pustaka yang lengkap,
komunitas besar, dan dokumentasi yang baik
menjadikan Python salah satu bahasa
pemrograman paling populer dalam riset dan
industri.

3. METODE PENELITIAN

Penelitian ini menggunakan metode
System Development Life Cycle (SDLC)
model Waterfall. Metode ini dipilih karena
memiliki tahapan yang sistematis, terstruktur,
serta sesuai untuk pengembangan perangkat
lunak yang memerlukan alur kerja jelas.

Analisis

Desain

Implementasi

Pemeliharaan

Gambar 1. Metode Waterfall

Model Waterfall terdiri dari beberapa tahap
yang saling berurutan, yaitu:

3.1 Analisis Kebutuhan

Pada tahap ini dilakukan identifikasi
kebutuhan sistem deteksi pergerakan mobil.
Kebutuhan tersebut meliputi perangkat keras,
yaitu kamera sebagai input video serta
komputer/laptop sebagai pemroses;
perangkat lunak, berupa Python, OpenCV,
dan pustaka pendukung lainnya; serta
kebutuhan fungsional, yaitu kemampuan
mendeteksi mobil secara real-time,
melakukan pelacakan objek, dan
mengklasifikasikan kondisi lalu lintas ke dalam
kategori lancar, padat, dan macet. Analisis
kebutuhan ini menjadi dasar dalam
perancangan sistem agar sesuai dengan
tujuan penelitian. Tahapan penelitian diawali
dengan studi literatur, yaitu pengumpulan
teori, algoritma, serta hasil penelitian
terdahulu yang relevan dengan deteksi
kendaraan. Literatur diperoleh dari jurnal
ilmiah, prosiding konferensi, maupun
repositori publik seperti arXiv. Studi literatur ini
bertujuan memberikan landasan teoritis yang
kuat bagi pengembangan sistem deteksi objek
pergerakan mobil.

Selanjutnya dilakukan pengambilan data
melalui, model deteksi yang digunakan dalam

I 301 | Jurnal E-Bisnis, Sistem Informasi, Teknologi Informasi ESIT Vol. XX No. 03 2025

penelitian ini adalah YOLOv8 dengan bobot
pretrained pada Dataset COCO. Model ini
dipilih karena mampu melakukan deteksi
objek secara real-time dengan tingkat akurasi
yang tinggi, khususnya pada kelas car yang
menjadi fokus penelitian. Pemanfaatan model
pretrained memungkinkan sistem langsung
mengidentifikasi mobil tanpa perlu melatih
model dari awal, sehingga proses
pengembangan lebih efisien dan kebutuhan
komputasi dapat dikurangi.

3.2 Desain/Perancangan

(s)

Sumber Video . S—
Tersedia?

!
. Sl
Preprocessing

— —
Deteksi

Ada
Detoksi? >
‘ ya
‘ Pelacakan &
Updadacks
|
L
Update Count
(" Smpan/)
_ visuaisasi

S/

Gambar 2. Flowchart

Diagram flowchart banyak digunakan
dalam perancangan perangkat lunak, analisis
sistem, maupun dokumentasi prosedur kerja,
karena mampu memvisualisasikan proses
secara jelas dan sistematis. Pada penelitian
ini, flowchart menggambarkan alur Kkerja
sistem deteksi objek pergerakan mobil. Proses
dimulai dari pengecekan ketersediaan sumber
video. Jika video tersedia, sistem melakukan
preprocessing berupa penyesuaian resolusi
dan penghapusan noise. Selanjutnya,
algoritma deteksi dijalankan untuk mengenali
mobil pada setiap frame. Apabila objek
terdeteksi, sistem melakukan pelacakan dan
pembaruan jalur pergerakan serta menghitung
jumlah mobil yang terdeteksi. Hasilnya
kemudian disimpan atau ditampilkan secara
visual. Proses ini berulang hingga seluruh
frame selesai diproses.

3.3 Implementasi

Setelah rancangan selesai, tahap
berikutnya adalah implementasi
menggunakan bahasa pemrograman Python
dengan pustaka OpenCV. Pada tahap ini,
algoritma yang telah dirancang diterjemahkan

ke dalam bentuk kode program. Proses
implementasi juga mencakup integrasi modul
deteksi, pelacakan, dan klasifikasi, serta
pengaturan resolusi video agar sesuai dengan
kebutuhan sistem real- time.

3.4 Pengujian

Pengujian dilakukan untuk memastikan
sistem berjalan sesuai dengan kebutuhan.
Metode pengujian yang digunakan adalah
blackbox testing untuk menguiji fungsi utama,
serta evaluasi performa berdasarkan akurasi
deteksi dan frame per second (FPS). Uji coba
dilakukan pada kondisi lingkungan berbeda,
yaitu siang hari, malam hari, dan hujan, guna
mengetahui tingkat keandalan sistem pada
berbagai situasi nyata.

3.5 Pemeliharaan

Tahap ini berfokus pada perbaikan
kesalahan atau bug, serta penyempurnaan
sistem berdasarkan hasil pengujian.
Pemeliharaan juga meliputi kemungkinan
pengembangan lebih lanjut, misalnya dengan
integrasi algoritma deep learning untuk
meningkatkan akurasi, atau penerapan sistem
pada perangkat edge agar lebih efisien.

4. HASIL DAN PEMBAHASAN

Pengembangan sistem deteksi
kendaraan berbasis YOLOv8 dilakukan
melalui beberapa tahapan inti, mulai dari
pembuatan Dataset, pelatihan model, hingga
implementasi sistem dengan tahapan
sebagain berikut:

4.1 Pengolahan Data dan Dataset

Data diperoleh melalui pengumpulan
rekaman video/CCTV kemudian diproses di
Roboflow. Proses ini meliputi anotasi objek
(bounding box), augmentasi (rotasi, flipping,
kontras), serta konversi Dataset agar
kompatibel dengan framework deep learning.
Dataset dibagi menjadi tiga bagian: train set
(92%), validation set (5%), dan test set (3%).

4.2 Pelatihan Model YOLOV8

Model YOLOv8 dilatih menggunakan
Dataset hasil preprocessing. membantu
Augmentasi data meningkatkan kemampuan
generalisasi model terhadap variasi kondisi
nyata seperti sudut kamera dan pencahayaan.
Evaluasi model menggunakan metrik seperti

I 302 | Jurnal E-Bisnis, Sistem Informasi, Teknologi Informasi ESIT Vol. XX No. 03 2025

precision, recall, dan mMAP menunjukkan
bahwa sistem dapat mendeteksi kendaraan
dengan akurasi yang tinggi.

4.3 Modul Sistem

Sistem dibangun dengan beberapa modul
utama:

a. Modul Akuisisi Data: menangkap input
dari kameralvideo.

b. Modul Preprocessing normalisasi
peningkatan kualitas citra, dan
penghapusan noise.

c. Modul deteksi pergerakan
mengidentifikasi kendaraan dengan
confidence threshold tertentu

d. Modul Tracking dan Perhitungan:
melacak kendaraan menggunakan
algoritma antar-frame seperti

SORT/DeepSORT dan Kalman Filter,
sekaligus menghitung jumlah kendaraan.

e. Modul Visualisasi dan Penyimpanan:
menampilkan bounding box, label objek,
jumlah kendaraan, serta kondisi lalu lintas
secara real-time.

4.4 Analisis Data

Analisis ukuran gambar, rasio aspek, dan
kepadatan anotasi menunjukkan kualitas
Dataset yang seimbang. Model lebih optimal
untuk skenario dengan jumlah objek sedang,
dan tetap mampu mendeteksi kendaraan pada
kondisi lalu lintas padat.

4.5 Deployment Sistem

Model yang telah dilatih
diimplementasikan baik melalui APl maupun
secara lokal. Hasil implementasi menunjukkan
sistem mampu mendeteksi dan menghitung
jumlah kendaraan pada video real-time
dengan visualisasi yang jelas.

4.6 Implementasi Sistem

Implementasi sistem merupakan tahap
realisasi rancangan menjadi aplikasi yang
dapat berjalan secara nyata. Pada tahap ini,
model deteksi YOLOv8, modul pelacakan,
perhitungan jumlah kendaraan, serta
klasifikasi kondisi lalu lintas diintegrasikan
dalam satu sistem yang mampu menerima
input dari video maupun kamera secara real-
time. Hasil implementasi menunjukkan bahwa
sistem mampu menampilkan visualisasi
kondisi lalu lintas dalam tiga situasi berbeda:

1. Lancar

Gambar 3. Tampilan Sistem Saat Lancar

Sistem mendeteksi hanya dua kendaraan
(mobil dan truk). Bounding box dengan
label objek serta nilai confidence
ditampilkan pada layar, dengan status lalu
lintas ditunjukkan sebagai Lancar.

Gambar 4. Tampilan Sistem Saat Ramai
Lancar

Sistem mendeteksi sebanyak 18
kendaraan, terdiri dari mobil, truk, dan
bus. Meskipun jumlah kendaraan
meningkat, pergerakan lalu lintas masih
terpantau normal. Tampilan layar
menampilkan status Ramai Lancar.

3. Macet

Jumlah Mobil: 26

Gambar 5. Tampilan Sistem Saat Macet

Sistem mendeteksi hingga 26 kendaraan yang
memenuhi area jalan raya. Bounding box
kendaraan tampak saling berdekatan, dan
layar menampilkan status Macet dengan
indikator visual berwarna merah.

Secara keseluruhan, sistem dapat
menghitung jumlah kendaraan, menampilkan
posisi dengan bounding box,

I 303 | Jurnal E-Bisnis, Sistem Informasi, Teknologi Informasi ESIT Vol. XX No. 03 2025

mengidentifikasi jenis kendaraan, serta
mengklasifikasikan kondisi lalu lintas secara
real-time. Visualisasi ini menunjukkan bahwa
sistem mampu memberikan gambaran yang
jelas terkait kepadatan lalu lintas dan
berpotensi digunakan sebagai alat bantu
pemantauan transportasi.

4.7 Pengujian Sistem Berdasarkan Kondisi
Pencahayaan

Pengujian sistem dilakukan pada tiga
kondisi lingkungan berbeda, yaitu siang cerah,
malam hari, dan hujan, dengan tujuan
mengevaluasi akurasi deteksi kendaraan
serta performa frame per second (FPS).

Tabel 1. Pengujian Berdasarkan Kondisi

Pencahayaan
Jumlah Mobil Akurasi FPS
dalam Frame
1-5 100% 26
6-10 92% 24
=10 88% 21

Pada kondisi siang cerah, sistem berhasil
mendeteksi 48 dari 50 kendaraan, sehingga
mencapai akurasi 96% dengan rata-rata
kecepatan pemrosesan 25 FPS. Hasil ini
menunjukkan bahwa pencahayaan optimal
memberikan dukungan terbaik terhadap
kualitas deteksi.

Pada kondisi malam hari, akurasi menurun
menjadi 76% (38 dari 50 kendaraan) dengan
FPS rata-rata 23. Rendahnya pencahayaan
menjadi tantangan utama, menyebabkan
sebagian kendaraan tidak terdeteksi atau
terjadi kesalahan pelabelan objek.

Sedangkan pada kondisi hujan, akurasi turun
lebih jauh menjadi 60% dengan hanya 30
kendaraan terdeteksi dari total 50, disertai
FPS rata-rata 20. Gangguan visual akibat
intensitas hujan berpengaruh terhadap
kualitas citra dan stabilitas deteksi. Hasil
pengujian ini menegaskan bahwa faktor
pencahayaan dan kondisi cuaca memiliki
pengaruh signifikan terhadap performa sistem,
baik dari segi akurasi maupun kecepatan
pemrosesan.

4.8 Pengujian Sistem Jumlah Mobil dalam
Frame

Pengujian ini dilakukan untuk
mengevaluasi akurasi dan konsistensi sistem
dalam mendeteksi jumlah mobil pada setiap
frame, sekaligus melihat pengaruh kepadatan
objek terhadap performa deteksi. Hasil
pengujian ditunjukkan pada tabel berikut:

Tabel 2. Pengujian Berdasarkan Jumlah Mobil
dalam Frame

Kondisi Jum Iviobil Akur FP§
uji blah Terdetek asi
Mobil Si
Siang 50 48 96% 25
cerah
Malam 50 38 T6% 23
Hujan 50 30 60% 20

Pada kondisi 1-5 mobil, sistem mencatat
akurasi tertinggi sebesar 100% dengan rata-
rata FPS 26. Hal ini disebabkan jumlah objek
yang sedikit sehingga minim terjadi occlusion
dan beban komputasi tetap ringan.

Saat jumlah mobil meningkat menjadi 6-10
unit, akurasi menurun menjadi 92% dengan
FPS 24. Penurunan terjadi karena sistem
harus menganalisis lebih banyak objek secara
bersamaan, sehingga risiko kesalahan deteksi
meningkat terutama pada kendaraan yang
saling berdekatan.

Pada kondisi dengan lebih dari 10 mobil,
akurasi turun lebih lanjut menjadi 88% dengan
FPS 21. Kepadatan kendaraan yang tinggi
menyebabkan sistem kesulitan memisahkan
bounding box secara akurat dan
meningkatkan beban komputasi. Hasil ini
menunjukkan bahwa semakin padat jumlah
kendaraan dalam frame, semakin besar
tantangan yang dihadapi sistem, baik dari sisi
akurasi maupun kecepatan pemrosesan.

5. PENUTUP
5.1 Kesimpulan

Penelitian ini berhasil merancang sistem
deteksi pergerakan mobil berbasis video real-
time menggunakan OpenCV dan Python
dengan pendekatan terstruktur, mulai dari
akuisisi data, preprocessing, deteksi objek
menggunakan background subtraction

I 304 | Jurnal E-Bisnis, Sistem Informasi, Teknologi Informasi ESIT Vol. XX No. 03 2025

maupun YOLO, hingga pelacakan dengan
algoritma seperti SORT atau DeepSORT
untuk menghitung kendaraan secara akurat.
Kinerja sistem dipengaruhi oleh metode
deteksi, kondisi lingkungan, dan spesifikasi
perangkat keras. Implementasi dengan
YOLOv8n pada GPU mampu mencapai 30-60
FPS, sedangkan pada CPU hanya 5-15 FPS.
Untuk menjaga akurasi pada kondisi sulit,
diperlukan peningkatan kualitas citra, data
augmentation, serta kalibrasi kamera. Sistem
ini berpotensi diterapkan dalam solusi
transportasi cerdas seperti pemantauan lalu
lintas, penghitungan jumlah kendaraan, dan
analisis kepadatan jalan. Data hasil deteksi
dapat divisualisasikan secara real-time
maupun disimpan di database/cloud untuk
analisis lanjutan, serta diintegrasikan dengan
ITS (Intelligent Transportation System) seperti
lampu lalu lintas adaptif atau sistem
peringatan dini kemacetan.

5.2 Saran

Berdasarkan hasil penelitian yang telah
dilakukan, terdapat beberapa sarn untuk
pengembangan sistem di masa mendatang,
yaitu sebagai berikut:

1. Kembangkan sistem dengan integrasi
metode YOLOv8 agar deteksi kendaraan
tetap akurat pada kondisi cuaca
pencahayaan rendah.

2. Gunakan perangkat keras dengan
dukungan GPU untuk mempercepat
komputasi, terutama saat memproses
data beresolusi tinggi atau video panjang.

3. Tambahkan antarmuka web dan mobile
sehingga hasil deteksi dapat diakses
secara real-time dari berbagai perangkat.

DAFTAR PUSTAKA

[1] Kushariyadi, K., Apriyanto, H., Herdiana,
Y., Asy’ari, F. H., Judijanto, L., Pasrun, Y.
P., & Mardikawati, B. (2024). Artificial
intelligence: Dinamika perkembangan Al
beserta penerapannya. Publishing
Indonesia.

[2] Priandini, J. R. (2024). Pengenalan
Rambu Lalu Lintas Menggunakan Model
You Only Look Once (YOLO) V8
(Doctoral dissertation, Universitas Islam
Sultan Agung Semarang).

[3] Budiana, F. P. (2024). Model Atensi Citra
Wajah Audiens Berbasis Edge Machine
Learning.

[4] Figri, A., Hugo, A., & Kalbuana, N. (2024).
Analisis Penggunaan Meningkatkan

Respons Drone Cepat untuk dalam
Penanganan Kecelakaan Pesawat di
Area Terpencil. Jurnal Riset Ilimu
Kesehatan Umum dan Farmasi
(JRIKUF), 2(3), 76-94.

[5] Editya, A. S., Ahmad, T., & Studiawan, H.
(2025). Deep Learning & Optical Flow
Dalam Analisis Forensik Drone. Penerbit
Andi.

[6] Khulan, M. A., & Pebrianti, R. (2023).
Rancang Bangun Sistem keamanan
Parkir Kendaraan Roda Dua Dengan
Teknologi Plate Recognition (Doctoral
dissertation, Politeknik Negeri ujung
Pandang).

[7] Lukman, A. (2024). Implementasi
DeeplLabv3+ Untuk Peningkatan Deteksi
dan Tracking Lajur Jalan Pada Sistem
Autonomous car= Implementation of
DeepLabv3+ for Improved Lane
Detection and Tracking in Autonomous
Car System (Doctoral dissertation,
Hasanuddin).

[8] Suryadi, D., Octiva, C. S., Fajri, T. 1.,
Nuryanto, U. W., & Hakim, M. L. (2024).
Optimasi Kinerja Sistem loT
Menggunakan Teknik Edge Computing.
Jurnal Minfo Polgan, 13(2), 1456-1461.

[9] Putra, P. Y., Arifianto, A. S., Fitri, Z. E., &
Puspitasari, T. D. (2023). Deteksi
Kendaraan Truk pada Video
Menggunakan Metode Tiny- YOLO v4.
Jurnal Informatika Polinema, 9(2), 215-
222.

[10]Fitriyati Prisunia, S. (2023). Pemanfaatan
Jetson Nano Nvidia Untuk Mendeteksi 7
Penggunaan Masker Secara Real-Time
Menggunakan Opencv Python (Doctoral
dissertation, Universitas Islam Sultan
Agung Semarang).

[11]Ardianto, D., & Widiyatmoko, A. T. (2024).
Color detector in an image using Python
and computer vision library. Journal of
Intelligent Systems Technology, 1(1), 25-
30.

I 305 | Jurnal E-Bisnis, Sistem Informasi, Teknologi Informasi ESIT Vol. XX No. 03 2025

