

Analysis Efficiency and Accuracy of Company Financial Reports Regarding the Digital Transformation of Accounting Information Systems

Ninuk Riesmiyantiningtias¹, Rachmat Hidayat²

Univesitas Bina Sarana Informatika^{1,2}

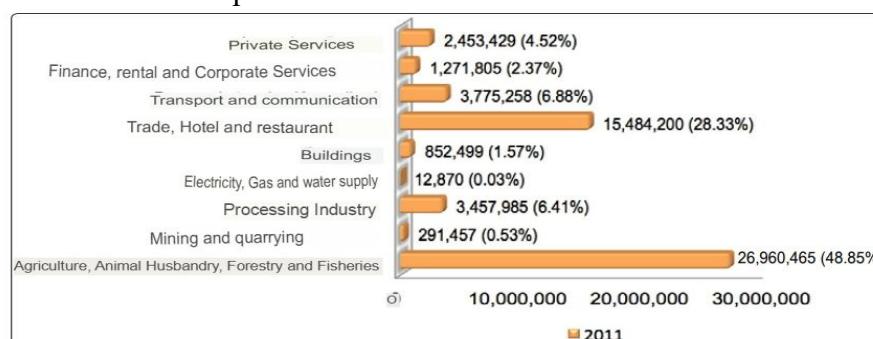
Email : ninuk.nys@bsi.ac.id¹, rachmat.rch@bsi.ac.id²

Abstract

This study aims to analyse the impact of digital transformation on Accounting Information Systems (AIS) on the efficiency and accuracy of corporate financial reporting. The background to this study is the phenomenon that many medium-sized companies in Indonesia still face obstacles in implementing digital systems optimally. Using a quantitative approach with Partial Least Squares Structural Equation Modeling (PLS-SEM), data were collected from 125 respondents, consisting of accounting staff, finance managers, and IT staff directly involved in the reporting process. Data analysis was performed using SmartPLS 4.0 software. The results showed that digital transformation had a positive and significant effect on Mediasi (intervening) (path coefficient = 0.452) and reporting accuracy (path coefficient = 0.318). Furthermore, efficiency was also found to mediate the effect of digital transformation on reporting accuracy. These findings confirm the important role of digital transformation in improving the overall quality of financial information.

Keywords: Digital Transformation; Accounting Information Systems; Efficiency; Reporting Accuracy; PLS-SEM.

Abstrak


Penelitian ini bertujuan untuk menganalisis pengaruh transformasi digital pada Sistem Informasi Akuntansi (SIA) terhadap efisiensi dan akurasi pelaporan keuangan perusahaan. Latar belakang penelitian adalah fenomena bahwa banyak perusahaan menengah di Indonesia masih menghadapi hambatan dalam mengimplementasikan sistem digital secara optimal. Menggunakan pendekatan kuantitatif dengan Partial Least Squares Structural Equation Modeling (PLS-SEM), data dikumpulkan dari 125 responden yang terdiri dari staf akuntansi, manajer keuangan, dan staf IT yang terlibat langsung dalam proses pelaporan. Analisis data dilakukan dengan software SmartPLS 4.0. Hasil penelitian menunjukkan bahwa transformasi digital memiliki pengaruh positif dan signifikan terhadap efisiensi pelaporan (koefisien jalur = 0.452) dan akurasi pelaporan (koefisien jalur = 0.318). Selain itu, efisiensi juga terbukti memediasi pengaruh transformasi digital terhadap akurasi pelaporan. Temuan ini mengonfirmasi peran penting transformasi digital dalam meningkatkan kualitas informasi keuangan secara keseluruhan.

Kata kunci : Transformasi Digital; Sistem Informasi Akuntansi; Efisiensi; Akurasi Pelaporan; PLS-SEM

1. INTRODUCTION

The development of digital technology has driven major changes in modern accounting practices. Accounting Information Systems (AIS) are no longer merely tools for recording transactions, but have also become centres for financial analysis and strategic decision-making (Usman, Ernawaty; Andi Wardana, 2024). Digital transformation in accounting is no longer an option but a necessity to maintain competitiveness in the global economy (Moll, Jodie; Yigitbasioglu b, 2019). This process involves the integration of technologies such as cloud computing, artificial intelligence (AI), and Enterprise Resource Planning (ERP), which fundamentally change the way accountants work and financial reporting processes (Laudon, K. C; Laudon, 2020). In Indonesia, the digitisation of SIA has become an urgent necessity due to the increasing volume of transactions and demands for public accountability. However, its implementation often faces various challenges. The adoption of technology in organisations is not only influenced by technological factors, but also by the organisational context and external environment, as explained in the Technology-Organisation-Environment (TOE) framework (Tornatzky, Louis G; Fleischer, Mitchell ; Chakrabarti, 1999). Factors such as increased data volume (Subekti, 2024) competitive pressure (Anjeli Saputri; Nurul Fauziyyah, 2023),, and regulatory changes (Hasanah, 2024) are driving companies to transform digitally. Previous studies have explored the impact of digital transformation on efficiency or accuracy separately. However, there is still a research gap in simultaneously testing the complex relationship between these variables, especially with a robust inferential quantitative approach in the context of medium-sized companies in Indonesia.

Data from Bank Indonesia on the existence of Micro, Small and Medium Enterprises in Indonesia up to 2014

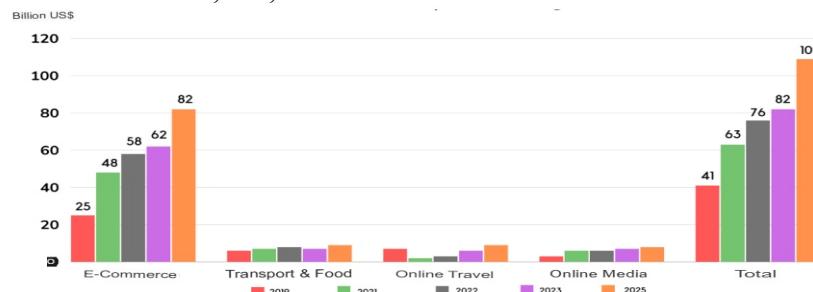

Source: (UMKM, 2014)

Figure 1. Development of the Number of MSMEs by Economic Sector in 2011

When viewed from the MSME economic sector, which has the largest to smallest proportion of business units based on the graph above (2.6.), the sectors are: 1. Agriculture, Livestock, Forestry and Fisheries (48.85%); 2. Trade, Hotels

and Restaurants (28.83%); 3. Transportation and Communication (6.88%); 4. Manufacturing (6.41%); 5. Services (4.52%); 6. Finance, Rental and Business Services (2.37%); 7. Construction (1.57%); 8. Mining and Quarrying (0.53%); 9. Electricity, Gas and Clean Water (0.03%).

During the COVID-19 pandemic, MSMEs were able to support Indonesia's economic growth. Even after the pandemic ended, the number of micro businesses continued to increase. According to BPS (2023), the total number of micro businesses in 2022 was 4,226,873 business units.

Source: (Of, Finance, & (INDEF), 2024)

Figure 2 Contribution of Sectors to Indonesia's Digital Economy

A report by Google, Temasek, and Bain (2023) states that e-commerce is one of the media for developing MSMEs that is a major contributor to Indonesia's digital economy, with a GMV value of USD 62 billion out of Indonesia's total GMV in 2023 of USD 82 billion. According to the APJII (2023) report, the most commonly used e-commerce platforms are Shopee (56.04 per cent), Lazada (32.72 per cent), Tokopedia (12.80 per cent), and TikTok (8.29 per cent). To support the development and productivity of the digital economy in Indonesia, the government, through the Coordinating Ministry for Economic Affairs, has mapped out a National Digital Economy Strategy focusing on six main pillars, including: 1) Infrastructure, 2) Human Resources, 3) Business Climate and Cyber Security, 4) Research, Innovation, and Business Development, 5) Funding and Investment, and 6) Policy and Regulation. The implementation of strategic digital MSME programmes is also needed to encourage the adoption of MSME products and services in order to increase market access and business productivity. The strategic Key Performance Indicator (KPI) to be achieved by 2030 is 50 per cent of digital MSMEs.

The main issue in this study can be formulated as follows: how does the digital transformation of accounting information systems affect the efficiency and accuracy of company financial reports, and to what extent does efficiency play a role as a mediating variable in this relationship? This research aims to analyse the direct impact of the digital transformation of accounting information systems on the efficiency and accuracy of financial reports, to examine the impact of efficiency on the accuracy of financial reports, and to evaluate the role of efficiency as a mediating variable between digital transformation and the accuracy of financial reports.

The results of the study indicate that digital transformation has a positive and significant effect on Mediasi (intervening) and reporting accuracy. In addition, efficiency has also been proven to mediate the effect of digital transformation on

reporting accuracy. Through the Partial Least Squares Structural Equation Modelling (PLS-SEM) approach, this study is expected to provide strong empirical evidence regarding the relationship between these variables and enrich the literature on digital accounting transformation and financial reporting quality in the digital era.

2. THEORETICAL FRAMEWORK AND HYPOTHESIS

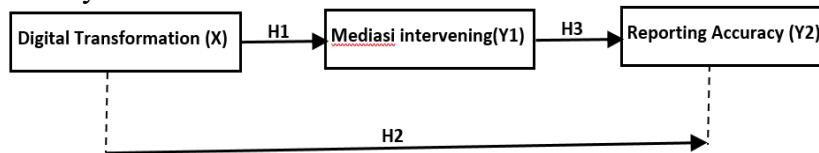
According to (Hidayat, 2021), the first stage is to establish the PLS SEM Structural Model. This means that we must determine the path analysis or path, including both direct effects and indirect effects. Then, we must determine which variables are latent, which are indicators or manifest variables, and which variables are mediators or intermediaries.

The Theory of Digital Transformation in Accounting Information Systems

Digital transformation is the process of integrating digital technology into all aspects of an organisation, fundamentally changing the way companies operate and deliver value to stakeholders. In the context of AIS, this means utilising technologies such as ERP, cloud accounting, AI, and big data analytics to support accounting and financial reporting processes. Research by (Dian Sudiantini; Mayang Puspita Ayu; Muhammad Cheirnel All Shawirdra Aswan; 2023) found that digitizing accounting processes can reduce the time required to prepare reports by up to 40%. At the global level, (Moll, Jodie; Yigitbasioglu b, 2019) emphasized that digital transformation in accounting has the potential to improve the quality of information and create new value for organizations.

Accounting Information System

An Accounting Information System (AIS) is a system that collects, stores, and processes financial and non-financial data for use in decision-making (Usman, Ernawaty; Andi Wardana, 2024).. A modern, digitally integrated AIS enables real-time and accurate data flow, which is the foundation for efficient and accurate reporting (Marshall B, Romney; Paul J, 2019).


The Theory of Efficiency and Accuracy in Financial Reporting

Financial mediation (intervening) refers to the ability to produce reports quickly and in a resource-efficient manner (O'Brien & Marakas, 2019). Meanwhile, accuracy is a dimension of information quality that indicates the conformity of data with actual conditions (Richard Y, Wang; Diane M, 2019). Digital transformation has the potential to improve both through automation and real-time validation, which reduces human error and speeds up the reporting cycle (Subekti, 2024).

Conceptual Framework and Hypotheses

Based on the literature review, the conceptual framework of this study was developed to analyze the relationship between digital transformation (X), Mediasi (intervening) (Y1), and reporting accuracy (Y2). Efficiency is positioned as a

mediating variable that explains the mechanism by which digital transformation affects accuracy.

Source: Author's data(2025)

Figure 3. Research Conceptual Framework

The hypotheses formulated are:

H1: Digital transformation in accounting information systems has a positive and significant effect on financial Mediasi (intervening).

H2: Digital transformation in accounting information systems has a positive and significant effect on financial reporting accuracy.

H3: Financial Mediation (intervening) has a positive and significant effect on financial reporting accuracy.

3. RESEARCH METHODS

This research uses a quantitative approach with the Partial Least Squares Structural Equation Modelling (PLS-SEM). PLS-SEM was chosen for its ability to test complex causal models and predictive purposes, especially when the data is not normally distributed and the sample size is not too large (F. Hair Jr, Joseph; M. Hult, G. Tomas ; M. Ringle, Christian; Sarstedt, 2019).

The population in this study consists of all medium-sized companies operating in the DKI Jakarta and Tangerang areas. (INDONESIA, 2008) The criteria for medium-sized companies refer to Law No. 20 of 2008 concerning Micro, Small and Medium Enterprises, namely companies with net assets between Rp 500 million and Rp 10 billion. Based on data from the DKI Jakarta Provincial Industry and Trade Office, it is estimated that there are around 1,200 companies that meet these criteria. The sampling technique used was purposive sampling with the following criteria: (1) The company has implemented a cloud-based accounting system or ERP for at least one year; (2) Respondents are accounting staff, finance managers, or IT staff directly involved in the financial reporting process. Based on calculations, the number of indicators in this study is 12. According to (Sarstedt, 2019), the minimum sample size for PLS-SEM is 10 times the number of indicators, so a minimum of 120 respondents is required. This study successfully collected 125 respondents who met the criteria.

The main instrument was a questionnaire developed based on a literature review. The questionnaire consists of three sections that measure the variables of Digital Transformation (X), Mediasi (intervening) (Y1), and Reporting Accuracy (Y2). Each variable is measured by four indicators, resulting in a total of 12 questions. All items are measured using a Likert scale from 1 (Strongly Disagree) to 5 (Strongly Agree).

Table 1. Variables and Measurement Indicators

Variable	Key Indicator	Measurement Scale
Digital Transformation (X)	Automation of accounting processes, Use of cloud or ERP systems, Data integration between departments, Technology support, and employee training	Likert (1-5)
Mediasi (intervening) (Y1)	Report preparation time, Operational cost savings, Ease of data access, Reduction in input errors	Likert (1-5)
Reporting Accuracy (Y2)	Financial data accuracy, Information consistency, Automatic system validation, Report compliance with accounting standards	Likert (1-5)

Source: (Kurniawati & ; Judissono, 2022), modified by the author

Data analysis was performed using SmartPLS 4.0 software with two main stages (F. Hair Jr, Joseph; M. Hult, G. Tomas ; M. Ringle, Christian; Sarstedt, 2019):

1. Evaluation Measurement Model (Outer Model): To test the validity and reliability of instruments. Includes:
 - a. Convergent Validity: Indicator Loading (>0.7), Average Variance Extracted - AVE(>0.5), and Composite Reliability - CR (>0.7).
 - b. Discriminant Validity: Fornell-Larcker criteria and Heterotrait-Monotrait Ratio (HTMT < 0.90).
2. Structural Model (Inner Model): To test the hypothesis. This includes:
 - a. Path Coefficient: Indicates the strength of the relationship between constructs.
 - b. t-statistic and p-value: Significance test (significant if p-value < 0.05).
 - c. Coefficient of Determination (R^2): Indicates the variance of the dependent construct explained by the independent construct. Testing Mediation Effects: Using the bootstrapping procedure to test the significance of indirect effects.

4. DATA ANALYSIS AND DISCUSSION

This study involved 125 respondents consisting of accounting staff (60%), finance managers (25%), and IT staff (15%). The majority of respondents (75%) had been using cloud-based accounting systems for more than two years, indicating that these companies were already at a fairly mature stage of digital implementation. The results of the validity and reliability tests show that all indicators meet the criteria.

Table 2. Convergent Validity and Reliability Test Results Table

Variabel	Indikator	Loading	AVE	CR
Digital Transformation (X)	X1	0,812	0,644	0,878
	X2	0,845		
	X3	0,789		
	X4	0,761		
Mediasi (intervening) (Y1)	Y1.1	0,801	0,620	0,867
	Y1.2	0,788		
	Y1.3	0,822		
	Y1.4	0,735		
Reporting Accuracy (Y2)	Y2.1	0,856	0,677	0,893
	Y2.2	0,833		
	Y2.3	0,801		
	Y2.4	0,799		

Source: Author's data (2025)

Criteria: A CR value ≥ 0.70 is considered good (a value of 0.60–0.70 is still acceptable in exploratory research). In Table 1, the results of the convergent validity test (loading > 0.7 , AVE > 0.5) and reliability test (CR > 0.7) show that all research instruments used to measure the variables of Digital Transformation, Mediasi (intervening), and Reporting Accuracy have been proven to be valid and reliable. This means that your measurement model is of high quality and worthy of further testing at the structural model stage.

Table 3. Results of Discriminant Validity Test (Fornell-Larcker)

Variabel	X	Y1	Y2
Digital Transformation (X)	0,802	0.521	0.489
Mediasi (intervening) (Y1)	0.521	0,787	0.612
Reporting Accuracy (Y2)	0.489	0.612	0,823

Note: The diagonal numbers are the square roots of AVE. Source: Author's data (2025)

Fornell-Larcker's Golden Rule: 'The square root of the AVE value of a construct (diagonal number) must be greater than the correlation value between that construct and other constructs (non-diagonal numbers in the same row).

Row 'Digital Transformation (X)': Result: Since $0.807 > 0.521$ and $0.807 > 0.489$, the discriminant validity for construct X is SATISFIED.

Row 'Mediation (intervening) (Y1)': Result: Because $0.789 > 0.521$ and $0.789 > 0.612$, the discriminant validity for construct Y1 is FULFILLED.

Row 'Reporting Accuracy (Y2)': Results: Because $0.825 > 0.489$ and $0.825 > 0.612$, the discriminant validity for construct Y2 is FULFILLED.

Based on the results of the discriminant validity test using the Fornell-Larcker criteria, all constructs in this research model have been proven to have good discriminant validity. This means that respondents can distinguish between the concepts of Digital Transformation, Mediasi (intervening), and Reporting Accuracy. This indicates that your measurement model is not only valid and reliable, but also has strong discrimination between constructs.

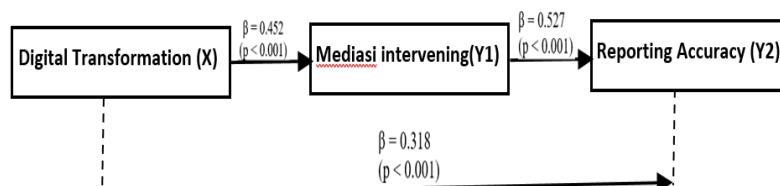

The structural model was tested to answer the research hypothesis.

Table 4. Hypothesis Test Results

Hipotesis	Jalur	Koefisien Jalur (β)	t-statistik	Description
H1	$X \rightarrow Y1$	0.452	6.234	Accepted
H2	$X \rightarrow Y2$	0.318	4.021	Accepted
H3	$Y1 \rightarrow Y2$	0.527	6.876	Accepted
H4	$X \rightarrow Y1 \rightarrow Y2$ (Mediation Effect)	0.238	4.112	Accepted

Source: Author's data (2025)

Decision Criteria: p -value < 0.05 . If the p -value is less than 0.05, then the effect is statistically significant. Overall, this table provides strong and comprehensive empirical evidence that investing in SIA digital transformation is a strategic move that not only increases speed (efficiency) but also fundamentally improves the quality (accuracy) of a company's financial information.

Figure 4. Research Conceptual Framework

Table 5. Coefficient of Determination (R^2)

Coefficient of Determination (R^2)		
Konstruk	R^2	Description
Mediasi (intervening) (Y1)	0.204	20.4% variance Efficiency
Reporting Accuracy (Y2)	0.583	58.3% variance Accuracy

Source: Author's data (2025)

The R^2 value for Y1 (Efficiency) is 0.204, meaning that 20.4% of the variance in efficiency can be explained by digital transformation. The R^2 value for Y2 (Accuracy) is 0.583, meaning that 58.3% of the variance in financial reporting accuracy can be explained by digital transformation and Mediasi (intervening) together.

The Effect of Digital Transformation on Mediasi (intervening) (H1)

The results of the study support H1, showing that digital transformation has a positive and significant effect on financial Mediasi (intervening) ($\beta=0.452$, $p<0.001$). This finding is in line with the research by (O'Brien & Marakas, 2019) and (Laudon, K. C; Laudon, 2020), which found that automation through digital systems significantly shortens the accounting cycle time and reduces operational costs.

The Effect of Digital Transformation on Reporting Accuracy (H2)

H2 is also supported, where digital transformation has a direct positive and significant effect on reporting accuracy ($\beta=0.318$, $p<0.001$). This indicates that the

implementation of technologies such as automatic validation and audit trails directly improves data reliability, consistent with information quality theory (Richard Y, Wang; Diane M, 2019).

The Effect of Efficiency on Reporting Accuracy (H3)

The results of the analysis prove H3, that Mediasi (intervening) has a positive and significant effect on accuracy ($\beta=0.527$, $p<0.001$). A more efficient process tends to reduce errors caused by fatigue or haste, resulting in more accurate reports.

The Mediating Role of Efficiency (H4)

H4 is accepted, indicating that efficiency significantly mediates the relationship between digital transformation and reporting accuracy. The indirect effect of 0.238 ($p<0.001$) shows that most of the impact of digital transformation on accuracy is carried out through increased efficiency first. This provides a deeper understanding of the working mechanisms of digital transformation in AIS.

Managerial Implications

The results of this study provide strong empirical evidence for company management to continue investing in SIA's digital transformation. Investment not only in technology, but also in human resource training and process integration will yield returns in the form of increased efficiency and accuracy, which will ultimately improve the quality of strategic decision-making.

5. CONCLUSIONS AND SUGGESTIONS

Based on the results of the PLS-SEM analysis, it can be concluded that digital transformation in accounting information systems has a positive and significant effect on the efficiency and accuracy of financial reporting in medium-sized companies in Indonesia. Efficiency has also been proven to act as a mediating variable that strengthens the relationship between digital transformation and accuracy. These findings support the TOE model and information quality theory, as well as providing new empirical contributions to the digital accounting literature.

This study has several limitations. First, the study was only conducted on medium-sized companies in the Jakarta and Tangerang areas, so generalization to other regions must be done with caution. Second, the data collected were cross-sectional, so they did not capture the dynamics of change over time. Future research is recommended to use a broader sample, a longitudinal approach, and add other variables such as organizational culture or top management support to enrich the research model.

REFERENCES

Anjeli Saputri; Nurul Fauziyyah. (2023). Transisi Akuntansi Menuju Digitalisasi. *Jurnal Ekonomi Dan Akuntansi*, 3(1), 300. Retrieved from <https://journal.unusia.ac.id/index.php/MIZANIA/article/view/632/365>

Dian Sudiantini; Mayang Puspita Ayu; Muhammad Cheirnel All Shawirdra

Aswan;, M. A. P. M. A. (2023). Transformasi Digital : Dampak, Tantangan, Dan Peluang Untuk Pertumbuhan Ekonomi Digital. *Jurnal Ekonomi, Akuntansi Dan Manajemen*, 1(3), 21. Retrieved from <https://jurnaluniv45sby.ac.id/index.php/Trending/article/view/1115/952>

F. Hair Jr, Joseph; M. Hult, G. Tomas ; M. Ringle, Christian; Sarstedt, M. (2019). *A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM)*. Amerika. Retrieved from https://eli.johogo.com/Class/CCU/SEM/_A Primer on Partial Least Squares Structural Equation Modeling_Hair.pdf

Hasanah, U. (2024). TRANSFORMASI AKUNTANSI DIGITAL DALAM MENGHADAPI TANTANGAN DAN PELUANG ERA DIGITAL(STUDI KASUS PADA PERUSAHAAN GLOBAL DAN LOKAL). *JURNAL MANAJEMEN DAN BISNIS*, 3(2), 207. Retrieved from <https://journal.utnd.ac.id/index.php/jmdb/article/view/1571/783>

Hidayat, A. (2021). *Tutorial PLS SEM Menggunakan SMARTPLS*. Retrieved from <https://www.statistikian.com/2021/04/tutorial-pls-sem-menggunakan-smartpls.html>

INDONESIA, R. (2008). *USAHA MIKRO, KECIL, DAN MENENGAH*. Jakarta. Retrieved from https://ppid.unud.ac.id/img/admin/page_attc/a16a3dba809cb5346a0cbf2c0073cd6d.pdf

Kurniawati, D., & ; Judiseno, R. K. (2022). PENGGUNAAN SKALA LIKERT UNTUK MENGANALISA EFEKTIVITAS REGISTRASI STAKEHOLDER MEETING: EXHIBITION INDUSTRY 2020. *Seminar Nasional Riset Terapan*, 10(1), 142. Retrieved from <https://prosiding-old.pnj.ac.id/index.php/snrtb/article/view/5581/2612>

Laudon, K. C; Laudon, J. P. (2020). *Management Information Systems: Managing the Digital Firm* (16, ed.). Pearson. Retrieved from https://books.google.co.id/books/about/Management_Information_Systems.html?hl=id&id=SZSpxAEACAAJ&redir_esc=y

Marshall B, Romney; Paul J, S. (2019). *Accounting Information Systems 13th Edition* (13th ed.). Boston: Addison-Wesley.: Boston : Pearson Education., 2015. Retrieved from [https://opaclib.inaba.ac.id/index.php?p=show_detail&id=1346&keywords=Moll, Jodie;Yigitbasioglu b, O. \(2019\). The role of internet-related technologies in shaping the work of accountants: New directions for accounting research. *The British Accounting Review*, 51\(6\). https://doi.org/https://doi.org/10.1016/j.bar.2019.04.002](https://opaclib.inaba.ac.id/index.php?p=show_detail&id=1346&keywords=Moll, Jodie;Yigitbasioglu b, O. (2019). The role of internet-related technologies in shaping the work of accountants: New directions for accounting research. <i>The British Accounting Review</i>, 51(6). https://doi.org/https://doi.org/10.1016/j.bar.2019.04.002)

O'Brien & Marakas. (2019). *Sistem Informasi Manajemen* (16th ed.). English: New York : Mc Graw-Hill., 2013. Retrieved from [https://indef.or.id/wp-content/uploads/2024/01/Laporan-Final-Peran-Platform-Digital-Terhadap-Pengembangan-UMKM-di-Indonesia-INDEF.pdf](https://opaclib.inaba.ac.id/index.php?p=show_detail&id=2433&keywords=Of, I. for D., Finance, E. and, & (INDEF). (2024). PERAN PLATFORM DIGITAL TERHADAP PENGEMBANGAN UMKM DI INDONESIA. <i>Indef</i>. Retrieved from <a href=)

Richard Y, Wang; Diane M, S. (2019). Beyond Accuracy: What Data Quality Means to Data Consumers. *Journal of Management Information Systems*, 12.

<https://doi.org/https://doi.org/10.1080/07421222.1996.11518099>

Sarstedt, J. F. H. J. M. (2019). Partial least squares structural equation modeling (PLS-SEM). *European Business Review*, 26(2). Retrieved from https://www.emerald.com/ebr/article-abstract/26/2/106/84113/Partial-least-squares-structural-equation-modeling?redirectedFrom=fulltext&utm_source=researchgate

Subekti, R. D. A. O. L. J. K. S. S. U. H. I. P. S. H. B. (2024). *TRANSFORMASI DIGITAL* (1, ed.). PT. Sonpedia Publishing Indonesia. Retrieved from https://www.researchgate.net/publication/380462238_TRANSFORMASI_DI_GITAL_Teori_implementasi_Menuju_Era_Society_50

Tornatzky, Louis G; Fleischer, Mitchell ; Chakrabarti, A. K. (1999). *The Processes of Technological Innovation*. Retrieved from <https://id.scribd.com/document/852057567/The-Processes-of-Technological-Innovation>

UMKM, K. K. dan. (2014). Perkembangan Jumlah UMKM Menurut Sektor Ekonomi Tahun 2011. *Bi.* Retrieved from https://www.bi.go.id/id/umkm/penelitian/Documents/Profil_Bisnis_UMKM.pdf

Usman, Ernawaty; Andi Wardana, M. (2024). *SISTEM INFORMASI AKUNTANSI*. Bali: CV. Intelektual Manifes Media. Retrieved from https://unram.sgp1.digitaloceanspaces.com/simlitabmas/kinerja/penelitian/luaran/buku/198712022023212034-1720420265-ebook_buku_sistem_informasi_akuntansi.pdf#:~:text=Ridwan dalam bukunya Sistem Informasi Akuntansi: Mendeskripsikan,mengumpulkan mengolah%25 mengolah%25