Sintesis Biodiesel Menggunakan Katalis Heterogen CaO Batu Kapur dengan Support Fly Ash Pabrik Kelapa Sawit Teraktivasi Termal

Authors

  • Rita Youfa Teknik Kimia Bahan Nabati, Politeknik ATI Padang
  • Elda Pelita Analisis Kimia, Politeknik ATI Padang
  • Dyah Nirmala Teknik Kimia Bahan Nabati, Politeknik ATI Padang
  • Desniorita Desniorita Teknologi Rekayasa Bioproses Energi Terbarukan, Politeknik ATI Padang
  • Regna Tri Jayanti Teknologi Rekayasa Bioproses Energi Terbarukan, Politeknik ATI Padang
  • Anang Baharuddin Sahaq Teknologi Rekayasa Bioproses Energi Terbarukan, Politeknik ATI Padang
  • Resi Levi Permadani Teknologi Rekayasa Bioproses Energi Terbarukan, Politeknik ATI Padang

DOI:

https://doi.org/10.32493/jitk.v10i1.49286

Keywords:

Biodiesel, CaO, Catalyst, Fly ash, RBDPO

Abstract

This study aims to produce biodiesel from Refined Bleached Deodorized Palm Oil (RBDPO) using a heterogeneous catalyst based on calcium oxide (CaO) derived from limestone andmodified with palm oil mill fly ash (FA) as a catalyst support. The limestone feedstock was first activated to obtain the CaO catalyst. Subsequently, the FA material was activated through calcination at 500°C. The CaO-FA catalyst was synthesized using the wet impregnation method and then calcined at 600°C. This catalyst was applied in the transesterification of RBDPO with methanol at various molar ratios. The study investigated the effect of different CaO-FA catalyst compositions (1:1, 2:1, and 3:1), and methanol:RBDPO molar ratios (8:1, 10:1, and 12:1) on biodiesel yield. The results demonstrated that both the CaO-FA catalyst ratios and the methanol:RBDPO molar ratios significantly influenced the biodiesel yield and the resulting Fatty Acid Methyl Ester (FAME) composition. Gas Chromatography-Mass Spectrometry (GC-MS) analysis revealed that the 3:1 CaO-FA composition with an 8:1 methanol:RBDPO molar ratio produced biodiesel with the highest methyl palmitate (C17H34O2) content of 88.99%, which meets the characteristics of high-quality biodiesel. These findings provide valuable insights into the development of CaO-FA-based heterogeneous catalysts for cost-effective and environmentally friendly biodiesel production, in line with government initiatives to promote renewable energy utilization.

References

Brahma, S., Nath, B., Basumatary, B., Das, B., Saikia, P., Patir, K., & Basumatary, S. (2022). Biodiesel production from mixed oils: A sustainable approach towards industrial biofuel production. Chemical Engineering Journal Advances, 10. https://doi.org/10.1016/ j.ceja.2022.100284

Chakraborty, R., Bepari, S., & Banerjee, A. (2010). Transesterification of soybean oil catalyzed by fly ash and egg shell derived solid catalysts. Chemical Engineering Journal, 165(3), 798–805. https://doi.org/10.1016/J.CEJ.2010.10.019

Farobie, O., & Hartulistiyoso, E. (2021). Palm Oil Biodiesel as a Renewable Energy Resource in Indonesia: Current Status and Challenges. BioEnergy Research 2021 15:1, 15(1), 93–111. https://doi.org/10.1007/S12155-021-10344-7

Ghosh, N., Patra, M., & Halder, G. (2024). Current advances and future outlook of heterogeneous catalytic trans-esterification towards biodiesel production from waste cooking oil. Sustainable Energy & Fuels, 8(6), 1105–1152. https://doi.org/10.1039/D3SE01564E

Ho, W. W. S., Ng, H. K., & Gan, S. (2012). Development and characterisation of novel heterogeneous palm oil mill boiler ash-based catalysts for biodiesel production. Bioresource Technology, 125, 158–164. https://doi.org/10.1016/ J.BIORTECH.2012.08.099

Ho, W. W. S., Ng, H. K., Gan, S., & Tan, S. H. (2014). Evaluation of palm oil mill fly ash supported calcium oxide as a heterogeneous base catalyst in biodiesel synthesis from crude palm oil. Energy Conversion and Management, 88, 1167–1178. https://doi.org/10.1016/J.ENCONMAN.2014.03.061

Jain, D., Khatri, C., & Rani, A. (2010). Fly ash supported calcium oxide as recyclable solid base catalyst for Knoevenagel condensation reaction. Fuel Processing Technology, 91(9), 1015–1021. https://doi.org/10.1016/J.FUPROC.2010.02.021

Kouzu, M., & Hidaka, J. S. (2012). Transesterification of vegetable oil into biodiesel catalyzed by CaO: A review. Fuel, 93, 1–12. https://doi.org/10.1016/ J.FUEL.2011.09.015

Leung, D. Y. C., Wu, X., & Leung, M. K. H. (2010). A review on biodiesel production using catalyzed transesterification. Applied Energy, 87(4), 1083–1095. https://doi.org/10. 1016/J.APENERGY.2009.10.006

Mahlia, T. M. I., Ismail, N., Hossain, N., Silitonga, A. S., & Shamsuddin, A. H. (2019). Palm oil and its wastes as bioenergy sources: a comprehensive review. Environmental Science and Pollution Research, 26(15), 14849–14866. https://doi.org/10.1007/S11356-019-04563-X/METRICS

Nirmala, D., Pelita, E., Desniorita, D., Youfa, R., Jayanti, R. T., Sahaq, A. B., & Permadani, R. L. (2024). Pemanfaatan Limbah Fly Ash Pabrik Kelapa Sawit Sebagai Adsorben Low-Cost untuk Pemucatan Crude Palm Oil. Jurnal Integrasi Proses, 13(2), 153–159. https://jurnal.untirta.ac.id/index.php/jip/article/view/28882

Orchidantya, N. S., Mas’udah, & Santosa, S. (2023). Pengaruh Rasio Katalis CaO-NaOH dan Waktu Reaksi Transesterifikasi terhadap Kualitas Biodiesel dari Minyak Sawit. DISTILAT: Jurnal Teknologi Separasi, 9(3), 330–337. https://doi.org/10.33795/ distilat.v9i3.3154

Sia, C. B., Kansedo, J., Tan, Y. H., & Lee, K. T. (2020). Evaluation on biodiesel cold flow properties, oxidative stability and enhancement strategies: A review. Biocatalysis and Agricultural Biotechnology, 24, 101514. https://doi. org/10.1016/J.BCAB.2020.101514

Sisca, V., Deska, A., Syukri, S., Zilfa, Z., & Jamarun, N. (2021). Synthesis and Characterization of CaO Limestone from Lintau Buo Supported by TiO 2 as a Heterogeneous Catalyst in the Production of Biodiesel. Indonesian Journal of Chemistry, 21(4), 979–989. https://doi.org/10.22146/ijc.64675

Tomić, M., Đurišić-Mladenović, N., Mićić, R., Simikić, M., & Savin, L. (2019). Effects of accelerated oxidation on the selected fuel properties and composition of biodiesel. Fuel, 235, 269–276. https://doi.org/10.1016/J.FUEL.2018.07.123

Volli, V., Purkait, M. K., & Shu, C. M. (2019). Preparation and characterization of animal bone powder impregnated fly ash catalyst for transesterification. Science of The Total Environment, 669, 314–321. https://doi.org/10.1016/J.SCITOTENV.2019.03.080

Wang, W., Liu, H., Li, F., Wang, H., Ma, X., Li, J., Zhou, L., & Xiao, Q. (2021). Effects of unsaturated fatty acid methyl esters on the oxidation stability of biodiesel determined by gas chromatography-mass spectrometry and information entropy methods. Renewable Energy, 175, 880–886. https://doi.org/10.1016/J.RENENE.2021.04.132

Wenchao, W., Fashe, L., & Ying, L. (2020). Effect of biodiesel ester structure optimization on low temperature performance and oxidation stability. Journal of Materials Research and Technology, 9(3), 2727–2736. https:// doi.org/10.1016/J.JMRT.2020.01.005

Wirawan, S. S., Solikhah, M. D., Setiapraja, H., & Sugiyono, A. (2024). Biodiesel implementation in Indonesia: Experiences and future perspectives. Renewable and Sustainable Energy Reviews, 189, 113911. https://doi.org/ 10.1016/J.RSER.2023.113911

Zhenyi, C., Xing, J., Shuyuan, L., & Li, L. (2021). Biodiesel Production Methods. International Journal of Energy and Smart Grid, 5(1–2), 1–10. https://doi.org /10.1080/00908310490465902

Downloads

Published

2026-01-12

How to Cite

Youfa, R., Pelita, E., Nirmala, D., Desniorita, D., Jayanti, R. T., Sahaq, A. B., & Permadani, R. L. (2026). Sintesis Biodiesel Menggunakan Katalis Heterogen CaO Batu Kapur dengan Support Fly Ash Pabrik Kelapa Sawit Teraktivasi Termal. Jurnal Ilmiah Teknik Kimia, 10(1), 25–33. https://doi.org/10.32493/jitk.v10i1.49286