Transformation of Agricultural Waste into Silica–Cellulose Microsponge Adsorbent for Optimization of Waste Cooking Oil as Biodiesel Feedstock

Authors

  • Rosmawati Sipayung Teknik Kimia Universitas Jambi
  • Rahma Amalia Teknik Kimia Universitas Jambi
  • Rara Ayu Lestary Teknik Kimia Universitas Jambi
  • Nita Widyastuti Teknik Kimia Universitas Jambi
  • Oki Alfernando Teknik Kimia Universitas Jambi
  • Ira Galih Prabasari Teknik Kimia Universitas Jambi
  • Nazarudin Teknik Kimia Universitas Jambi
  • Putri Ananda Teknik Kimia Universitas Jambi
  • Intan Nandia Sakti Teknik Kimia Universitas Jambi

DOI:

https://doi.org/10.32493/jitk.v10i1.54342

Keywords:

Adsorption, Free fatty acid (FFA), Silica–cellulose, Sustainable biodiesel, Waste cooking oil

Abstract

The utilization of used cooking oil as a biodiesel feedstock is hindered by its high free fatty acid (FFA) content, which interferes with the transesterification process. This study aims to reduce FFA levels through adsorption using a silica–cellulose-based microsponge adsorbent synthesized from rice husk ash and corn cob waste. The investigated process variables include adsorbent mass (1, 3, 5 g), temperature (30, 45, 60 °C), contact time (30, 60, 90 minutes), and silica-to-cellulose ratios (40:60, 50:50, 60:40). FTIR analysis revealed characteristic peaks of Si–O–Si (~1053 cm⁻¹) and Si–O (~795 cm⁻¹) indicating the presence of amorphous silica, while the O–H stretching (~3200–3500 cm⁻¹) of cellulose appeared weaker due to silica dominance on the surface. This confirms the successful formation of the silica–cellulose composite with strong chemical interaction. Furthermore, Brunauer–Emmett–Teller (BET) analysis showed a specific surface area of 87.77 m²/g with mesoporous characteristics, confirming the microsponge structure with high affinity toward polar molecules such as FFA. The optimum conditions were obtained at 5 g adsorbent mass, 30 °C, 60 minutes contact time, and a 60:40 silica-to-cellulose ratio, achieving an FFA reduction efficiency of 49.62%. These physicochemical properties make the adsorbent efficient, energy-saving, and environmentally friendly, highlighting the great potential of agricultural waste transformation into active materials for pre-purification of used cooking oil toward sustainable biodiesel production.

References

Ahmad, N., Ramli, A., & Hameed, B. (2019). Equilibrium and kinetics of free fatty acid adsorption onto modified carbon adsorbents. Renewable Energy, 135, 1227–1236. https://doi.org/10.1016/j.renene.2018.09.056

Badan Standardisasi Nasional. (2015). SNI 7182:2015 — Spesifikasi biodiesel (FAME). Jakarta: BSN. https://adoc.pub/biodiesel-sni71822015-standar-nasional-indonesia.html#google_vignette

Bavaresco, A., Fonseca, J. M., Scheufele, F. B., Silva, C., & Teleken, J. G. (2021). Use of carbonized corn cob biomass to reduce acidity of residual frying oil. Acta Scientiarum. Technology, 43, e51303. https://doi.org/10.4025/actascitechnol.v43i1.51303

Cerón Ferrusca, M., Romero, R., Martínez, S.L., Ramírez-Serrano, A., & Natividad, R. (2023). Biodiesel production from waste cooking oil: A perspective on catalytic processes. Processes, 11(7), 1952. https://doi.org/10.3390/pr11071952

Fatah, R., Sulistyo, S., & Umardani, Y. (2021). Karakterisasi abu sekam padi (rice husk ash) hasil pembakaran sekam padi. Jurnal Teknik Mesin, 9(4), 565–570. https://ejournal3.undip.ac.id/index.php/jtm/article/view/37576

Foo, K.Y., & Hameed, B.H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156, 2–10. https://doi.org/10.1016/j.cej.2009.09.013

Foo, K.Y., & Hameed, B.H. (2012). Preparation, characterization and evaluation of adsorptive properties of orange peel based activated carbon via microwave-induced K₂CO₃ activation. Bioresource Technology, 104, 679–686. https://doi.org/10.1016/j.biortech.2011.10.005

Gaur, V., Sharma, M., & Verma, N. (2022). Porous biocomposite adsorbents for fatty acid removal: Preparation, performance, and mechanism. Separation and Purification Technology, 282, 120054. https://doi.org/10.1016/j.seppur.2021.120054

Government of Indonesia. (2014). Government Regulation No. 79 of 2014 on National Energy Policy (Kebijakan Energi Nasional). Kementerian ESDM RI. https://policy.asiapacificenergy.org/sites/default/files/Government%20Regulation%20No.%2079%3A2014%20of%202014%20%28EN%29.pdf

Haryanto, A., Silviana, U., Triyono, S., & Prabawa, S. (2015). Produksi biodiesel dari transesterifikasi minyak jelantah dengan bantuan gelombang mikro: Pengaruh intensitas daya dan waktu reaksi terhadap rendemen dan karakteristik biodiesel. AGRITECH, 35(2), 234–240. https://doi.org/10.22146/agritech.13792

Kumar, A., Singh, R., & Gupta, V. (2017). A review on the use of agricultural residues for adsorption of oils and fatty acids. Renewable and Sustainable Energy Reviews, 79, 491–502. https://doi.org/10.1016/j.rser.2017.05.056

Manique, M. C., Faccini, C. S., Onorevoli, B., Benvenutti, E. V., & Caramão, E. B. (2012). Rice husk ash as an adsorbent for purifying biodiesel from waste frying oil. Fuel, 92(1), 56–61. https://doi.org/10.1016/j.fuel.2011.07.024

Miri, S., De Girolamo, A., Nadeem, H., Chin, B.W.X., Hora, Y., Andrews, P.C., & Batchelor, W. (2023). Composite membranes of cellulose–mesoporous silica: optimization of membrane fabrication and adsorption capacity. Cellulose, 30, 339–357. https://doi.org/10.1007/s10570-022-04908-9

Nasir, M., Hidayat, T., & Ramadhan, R. (2020). Low-cost biosorbents for biodiesel feedstock purification: A review. Renewable and Sustainable Energy Reviews, 131, 110008. https://doi.org/10.1016/j.rser.2020.110008

Nugraha, A., & Hidayati, D. (2019). Pengaruh rasio silika dan selulosa terhadap kinerja adsorben biomassa dalam pemurnian minyak jelantah. Jurnal Teknologi Kimia dan Industri, 8(2), 55–63. https://doi.org/10.22146/jtki.49321

Okoro, H. K., Alao, S. M., Pandey, S., Jimoh, I., Basheeru, K. A., Caliphs, Z., & Ngila, J. C. (2022). Recent potential application of rice husk as an eco-friendly adsorbent for removal of heavy metals. Applied Water Science. https://doi.org/10.1007/s13201-022-01778-1

Pasaribu, D. R., Fitri, D. R., Subagiyo, L., Nuryadin, A., & Haryanto, Z. (2023). Potensi sekam padi sebagai adsorben untuk meregenerasi minyak jelantah. Jurnal Literasi Pendidikan Fisika, 4(2), 96–102. http://jurnal.fkip.unmul.ac.id/index.php/JLPF/article/view/2325

Pertamina Energy Institute. (2020). Pertamina Energy Outlook 2020. PT Pertamina (Persero). https://www.pertamina.com/en/document/pertamina-energy-institute?detail=1054

Putri, A. R., Sari, N. P., & Lestari, Y. (2021). Utilization of lignocellulosic biomass as low-cost adsorbent for free fatty acid reduction in used cooking oil. Journal of Environmental Chemical Engineering, 9(4), 105601. https://doi.org/10.1016/j.jece.2021.105601

Rahayu, A. N., & Adhitiyawarman. (2014). Pemanfaatan tongkol jagung sebagai adsorben besi pada air tanah. JKK, 2(3), 7–13.

Rengga, W. D. P., Sediawan, W. B., Imani, N. A. C., Harianingsih, H., & Salsabiil, K. A. (2020). Adsorption studies of rice husk-based silica/carbon composite. EKSAKTA: Journal of Sciences and Data Analysis, 20(2), 98–104. https://doi.org/10.20885/EKSAKTA.vol1.iss2.art1

Saleh, T. A., & Gupta, V. K. (2022). Nanomaterial and polymer membranes: Synthesis, characterization, and applications. Elsevier. https://doi.org/10.1016/B978-0-12-823154-5.00004-2

Setiawan, R., & Wulandari, F. (2021). Adsorpsi asam lemak bebas pada minyak goreng bekas menggunakan abu sekam padi. Jurnal Sains dan Teknologi Lingkungan, 13(1), 15–23. https://doi.org/10.5614/jstl.2021.13.1.3

Sipayung, R., & Budiyono. (2022). Optimization of biodiesel production from used cooking oil using modified calcium oxide as catalyst and n-hexane as solvent. Materials Today: Proceedings, 63(Supplement 1), S32–S39. https://doi.org/10.1016/j.matpr.2021.12.562

Song, Y., Zhang, X., & Wang, Q. (2023). Preparation and characterization of biochar-based porous adsorbents for wastewater treatment. Environmental Research, 228, 115857. https://doi.org/10.1016/j.envres.2023.115857

Syauqiah, I., Amalia, M., & Kartini, H. A. (2011). Analisis variasi waktu dan kecepatan pengadukan pada proses adsorbsi limbah logam berat dengan arang aktif. Info Teknik, 12(1), 11–20. http://dx.doi.org/10.20527/infotek.v12i1.1773

Wibawa, S., Putra, A. R., & Rahmawati, D. (2020). Characterization of rice husk-derived silica and its application as low-cost adsorbent. IOP Conference Series: Materials Science and Engineering, 742(1), 012007. https://doi.org/10.1088/1757-899X/742/1/012007

Downloads

Published

2026-01-12

How to Cite

Sipayung, R., Rahma Amalia, Rara Ayu Lestary, Nita Widyastuti, Oki Alfernando, Ira Galih Prabasari, … Intan Nandia Sakti. (2026). Transformation of Agricultural Waste into Silica–Cellulose Microsponge Adsorbent for Optimization of Waste Cooking Oil as Biodiesel Feedstock. Jurnal Ilmiah Teknik Kimia, 10(1), 34–42. https://doi.org/10.32493/jitk.v10i1.54342