Optimasi Suhu Reboiler pada De-Butanizer Column untuk Meningkatkan Efisiensi Energi dan Menjaga Kualitas LPG Mixed

Authors

  • Lingga Putri Herani Jurusan Teknik Kimia, Fakultas Teknik, Universitas Sriwijaya
  • Alif Ripaldi Jurusan Teknik Kimia, Fakultas Teknik, Universitas Sriwijaya
  • Lia Cundari Jurusan Teknik Kimia, Fakultas Teknik, Universitas Sriwijaya
  • Muhammad Ardian PT Perta-Samtan Gas Fractination Plant, Sungai Gerong, Sumatera Selatan
  • Ristian Januari PT Perta-Samtan Gas Fractination Plant, Sungai Gerong, Sumatera Selatan

DOI:

https://doi.org/10.32493/jitk.v10i1.54870

Keywords:

Fractionation Plant, Distillation Column, Aspen HYSYS V.14

Abstract

The fractionation plant of PT Perta-Samtan Gas Sungai Gerong separates hydrocarbon components from Natural Gas Liquid (NGL) into Liquefied Petroleum Gas (LPG) products that comply with the specifications of SK Ditjen Migas No. 116.K/10/DJM/2020. One key unit in this process is the De-Butanizer Column, which separates butane from lighter fractions. This study analyzes the effect of reboiler temperature variation on the composition of the LPG mixed and on energy efficiency in the distillation system. The simulation was performed in Aspen HYSYS V.14 using the Peng–Robinson equation of state and was based on actual operating data from the plant’s Distributed Control System (DCS). The results show that decreasing the reboiler temperature increases the propane (C3) content while reducing butane (C4) in the LPG mixed, with some butane carried over to the bottom product due to a lower boil-up rate. The optimal condition was found at 279.1 °F: at this temperature the LPG mixed still met quality standards while heat-flow consumption decreased by 460,491.74 kJ/h, resulting in annual energy savings of approximately Rp 321,073,593.25. This analysis concludes that operating the reboiler at a lower temperature can enhance energy efficiency without compromising product quality, thereby offering significant economic benefits to the company.

References

Agustina, D. S., & Fitriah. (2023). Optimization of distillation column reflux ratio for distillate purity and process energy requirements. International Journal of Basic and Applied Science, 12(2). Retrieved from www.ijobas.pelnus.ac.id

Ahmed, R., Cai, T., Nieuwoudt, I., Mohammad, S., & Aichele, C. (2024). Quantifying the point efficiency of cyclohexane/n-heptane in non-total reflux conditions. Industrial and Engineering Chemistry Research, 63(16), 7357–7367. https://doi.org/10.1021/acs.iecr.4c00556

Al Kalbani, F., & Zhang, J. (2023). Inferential composition control of a distillation column using active disturbance rejection control with soft sensors. Sensors, 23(2). https://doi.org/10.3390/s23021019

Dharmawan, A., Suweleh, M., & Mulyawan, S. (2024). Optimization of heavy key composition of distillate in deisobutanizer column using Aspen Hysys with flow rate reflux and reboiler temperature in alkylation unit at Company PEP. Scientific Contributions Oil and Gas, 47(1), 43–56. https://doi.org/10.29017/SCOG.47.1.1609

Dziubek, K. F. (2022). On the definition of phase diagram. Crystals, 12(9). https://doi.org/10.3390/cryst12091186

Jia, W., Lin, Y., Yang, F., & Li, C. (2020). A novel lift-off diameter model for boiling bubbles in natural gas liquids transmission pipelines. Energy Reports, 6. https://doi.org/10.1016/j.egyr.2020.02.014

Jovijari, F., Kosarineia, A., Mehrpooya, M., & Nabhani, N. (2022). Advanced exergy analysis of the natural gas liquid recovery process. Thermal Science, 26(3). https://doi.org/10.2298/TSCI210522311J

Peng, D. Y., & Robinson, D. B. (1976). A new two-constant equation of state. Industrial and Engineering Chemistry Fundamentals, 15(1), 59–64. https://doi.org/10.1021/i160057a011

Poling, B. E., Prausnitz, J. M., & O’Connell, J. P. (2001). The properties of gases and liquids (5th ed.). McGraw-Hill.

Rojey, A., Jaffret, C., Cornot-Gandolphe, S., Durand, B., Jullian, S., & Valais, M. (1997). Natural gas: Production, processing, transport (C. J. Alexandre Rojey, Ed.). Editions Technip.

S., V. M. (2021). Analysis of the effect of feed composition and thermal conditions on distillation plant performance using a computer model. Journal of Chemical Engineering and Materials Science, 12(2). https://doi.org/10.5897/jcems2020.0352

Sahiduzzaman, M., Raihan, R., Moksatara, & Hossain, A. (2024). Study on the physiochemical properties of liquefied petroleum gas available by cylinders in Bangladesh. International Journal of Latest Technology in Engineering Management & Applied Science, 13(5), 186–194. https://doi.org/10.51583/ijltemas.2024.130519

Suharto, M., Wibowo, A. A., & Suharti, P. H. (2023). Optimasi pemurnian etanol dengan distilasi ekstraktif menggunakan Chemcad. Distilat: Jurnal Teknologi Separasi, 6(1). https://doi.org/10.33795/distilat.v6i1.53

Talib, H. G., Al-Dawody, M. F., & Sarris, I. E. (2023). The characteristics of gasoline engines with the use of LPG: An experimental and numerical study. International Journal of Thermofluids, 18. https://doi.org/10.1016/j.ijft.2023.100316

Tan, H., & Cong, L. (2023). Modeling and control design for distillation columns based on the equilibrium theory. Processes, 11(2). https://doi.org/10.3390/pr11020607

Yagishita, M., Kölling, R., & Einfalt, D. (2023). Introducing a simple method to investigate relative volatilities of flavour compounds in fruit brandies. Beverages, 9(2). https://doi.org/10.3390/beverages9020032

Downloads

Published

2026-01-12

How to Cite

Herani, L. P., Ripaldi, A., Cundari, L., Muhammad Ardian, & Januari, R. (2026). Optimasi Suhu Reboiler pada De-Butanizer Column untuk Meningkatkan Efisiensi Energi dan Menjaga Kualitas LPG Mixed. Jurnal Ilmiah Teknik Kimia, 10(1), 12–24. https://doi.org/10.32493/jitk.v10i1.54870