Studi Awal Sintesis dan Evaluasi Kestabilan Hidrogel Komposit Fly Ash–Alginate untuk Adsorpsi Pb²⁺

Authors

  • Rimadina Sukmasuci Lestari Universitas Ahmad Dahlan
  • Farrah Fadhillah Hanum Universitas Ahmad Dahlan
  • Maryudi Universitas Ahmad Dahlan
  • Budi Setya Wardhana Universitas Ahmad Dahlan

DOI:

https://doi.org/10.32493/jitk.v10i1.55444

Keywords:

Fly Ash, Hidrogel, Adsorpsi, logam berat, Limbah cair

Abstract

Peningkatan limbah fly ash (FA) dari PLTU di Indonesia serta risiko pencemaran logam berat mendorong pengembangan material adsorben yang efektif dan berkelanjutan. Oleh karena itu, pada penelitian ini fly ash (FA) dari PLTU dimanfaatkan sebagai bahan adsorben untuk mengatasi pencemaran logam berat, khususnya Pb²⁺. Penelitian ini berfokus pada pembuatan hidrogel komposit berbasis fly ash (FA)–sodium alginate yang dibentuk menggunakan CaCl₂ sebagai agen pengikat silang dan kemudian mengevaluasi kinerja adsorpsi hydrogel ini terhadap ion Pb²⁺ dalam sistem batch. Prosedur penelitian meliputi persiapan bahan FA, sintesis hidrogel, karakterisasi melalui uji swelling dan ketahanan fisik, uji adsorpsi Pb²⁺, serta analisis efektivitas adsorpsi menggunakan Atomic Absorption Spectroscopy (AAS). Hasil karakterisasi mikrostruktur menunjukkan bahwa FA terdistribusi merata dalam jaringan tiga dimensi hidrogel. Formulasi FA-D memiliki ketahanan fisik paling stabil dan nilai swelling 0,91%, menandakan struktur yang kompak dan ikatan silang optimal. Kondisi adsorpsi terbaik diperoleh pada kecepatan pengadukan 500 rpm selama 150 menit, yang menghasilkan kestabilan fisik dan penurunan kekeruhan yang efisien. Uji adsorpsi menunjukkan bahwa komposisi FA-D memiliki persen removal tertinggi terhadap Pb²⁺ sebesar 98,21%. Secara keseluruhan, hidrogel berbasis FA terbukti efektif sebagai adsorben logam berat dan berpotensi diterapkan sebagai material alternatif yang ekonomis dan ramah lingkungan untuk pengolahan air tercemar.

References

Ahmaruzzaman, M. (2009). Role of fly ash in the removal of organic pollutants from wastewater. Energy and Fuels, 23(3), 1494–1511.

Akar, S. T., Çolo, H., Sayin, F., Kara, I., & Akar, T. (2022). Parametric optimization of Cu(II) removal process by a metakaolin-based geopolymer: Batch and continuous process design. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2022.132819

Alinnor, I. J. (2007). Adsorption of heavy metal ions from aqueous solution by fly ash. Fuel, 86(5–6), 853–857. https://doi.org/10.1016/j.fuel.2006.08.019

Amrhar, O., Berisha, A., Gana, E., Nassali, H., & Elyoubi, M. (2021). Removal of methylene blue dye by adsorption onto Natural Muscovite Clay: experimental, theoretical and computational investigation. International Journal of Environmental Analytical Chemistry, 103, 2419–2444. https://doi.org/10.1080/03067319.2021.1897119

Asiva Noor Rachmayani. (2015). Adsorpsi Batubara Terhadap Ion Timbal. 6.

Astusi, W., & Kurniawan, B. (2015). Adsorpsi Pb2+ Dalam Limbah Cair Artifisial Menggunakan Sistem Kolom Dengan Bahan Isisan Abu Layang Batubara Serbuk dan Granular. 4(1), 27–33.

Darban, Z., Shahabuddin, S., Gaur, R., Ahmad, I., & Sridewi, N. (2022). Hydrogel-Based Adsorbent Material for the Effective Removal of Heavy Metals from Wastewater: A Comprehensive Review. Gels, 8. https://doi.org/10.3390/gels8050263

Fransiska, D., & Reynaldi, A. (2020). Karakteristik Hidrogel Dari Iota Karaginan dan PVA (Poly-Vinyl Alcohol) Dengan Metode Freezing-Thawing Cycle. Jambura Fish Processing Journal, 1(1), 28–36. https://doi.org/10.37905/jfpj.v1i1.4503

Garg, U., Kaur, M., Garg, V., & Sud, D. (2008). Removal of nickel(II) from aqueous solution by adsorption on agricultural waste biomass using a response surface methodological approach. Bioresource Technology, 99 5, 1325–1331. https://doi.org/10.1016/J.BIORTECH.2007.02.011

Ghani, S. M. M., , Nurul Ekmi Rabat * , Abdul Rahman Abdul Rahim, Khairiraihanna Johari, A. A. S. and R. K., & Chemical. (2023). Amine Infused Fly Ash Grafted Acrylic Acid / Acrylamide.

Ghani, S., Rabat, N., Rahim, A. A., Johari, K., Siyal, A., & Kumeresen, R. (2023). Amine Infused Fly Ash Grafted Acrylic Acid/Acrylamide Hydrogel for Carbon Dioxide (CO2) Adsorption and Its Kinetic Analysis. Gels, 9. https://doi.org/10.3390/gels9030229

Ghica, M., Hîrjău, M., Lupuleasa, D., & Dinu-Pîrvu, C. (2016). Flow and Thixotropic Parameters for Rheological Characterization of Hydrogels. Molecules, 21. https://doi.org/10.3390/molecules21060786

Guiza, S., Hajji, H., & Bagané, M. (2019). External mass transport process during the adsorption of fluoride from aqueous solution by activated clay. Comptes Rendus Chimie. https://doi.org/10.1016/J.CRCI.2019.02.001

Hanum, F. F., & Rahayu, A. (2022). Studi pemanfaatan dan metode pemisahan silika dari coal fly ash. Open Science and Technology. https://doi.org/10.33292/ost.vol2no1.2022.44

Hanum, F. F., Salamah, S., Rifai Sanuhung, A., & Setya Wardhana, B. (2024). Study on The Potential Contamination of Heavy Metals: Analysis of Cr and Pb Contents From Power Plants in Indonesia Using the Batch Leaching Method. Jurnal Sains Natural, 14(1), 53–61. https://doi.org/10.31938/jsn.v14i1.689

Hardyanti, N., & Syafrudin. (n.d.). Penyisihan Konsentrasi Timbal (Pb) Menggunakan Adsorbent Abu Endapan Batu Bara (Studi Kasus : Air Limbah Industri Percetakan Semarang).

Irdemez, Ş., Özyay, G., Torun, E., Kul, S., & Bingül, Z. (2022). Comparison of Bomaplex Blue CR-L Removal by Adsorption Using Raw and Activated Pumpkin Seed Shells. Ecological Chemistry and Engineering S, 29, 199–216. https://doi.org/10.2478/eces-2022-0015

Jadaa, W. (2024). Wastewater Treatment Utilizing Industrial Waste Fly Ash as a Low-Cost Adsorbent for Heavy Metal Removal: Literature Review. Clean Technologies, 6(1), 221–279. https://doi.org/10.3390/cleantechnol6010013

Kalinkin, A., Gurevich, B., Myshenkov, M., Chislov, M., Kalinkina, E., Zvereva, I., Cherkezova-Zheleva, Z., Paneva, D., & Petkova, V. (2020). Synthesis of Fly Ash-Based Geopolymers: Effect of Calcite Addition and Mechanical Activation. Minerals. https://doi.org/10.3390/min10090827

Kobayashi, Y., Ogata, F., Nakamura, T., & Kawasaki, N. (2020). Synthesis of novel zeolites produced from fly ash by hydrothermal treatment in alkaline solution and its evaluation as an adsorbent for heavy metal removal. Journal of Environmental Chemical Engineering, 8, 103687. https://doi.org/10.1016/j.jece.2020.103687

Kobayashi, Y., Ogata, F., Saenjum, C., Nakamura, T., & Kawasaki, N. (2020). Removal of Pb2+ from Aqueous Solutions Using K-Type Zeolite Synthesized from Coal Fly Ash. Water, 12, 2375. https://doi.org/10.3390/w12092375

Meili, L., Lins, P., Costa, M. T., Almeida, R., Abud, A., Soletti, J., Dotto, G., Tanabe, E., Sellaoui, L., Carvalho, S., & Erto, A. (2019). Adsorption of methylene blue on agroindustrial wastes: Experimental investigation and phenomenological modelling. Progress in Biophysics and Molecular Biology, 141, 60–71. https://doi.org/10.1016/j.pbiomolbio.2018.07.011

Mufrodi, Z., Sutrisno, B., & Hidayat, A. (2010). Modifikasi Limbah Abu Layang Sebagai Material Baru Adsorben. Prosiding Seminar Nasional Teknik Kimia “Kejuangan” , 1–6.

Roldán-Cruz, C., García-Hernández, Á., Álvarez-Ramírez, J., & Vernon‐Carter, E. (2021). Effect of the stirring speed in the in vitro activity of α-amylase. Food Hydrocolloids, 110, 106127. https://doi.org/10.1016/j.foodhyd.2020.106127

Saha, A., Sekharan, S., Manna, U., & Sahoo, L. (2020). Transformation of non-water sorbing fly ash to a water sorbing material for drought management. Scientific Reports, 10. https://doi.org/10.1038/s41598-020-75674-6

Simion, A., Grigoras, C., & Favier, L. (2025). Batch Adsorption of Orange II Dye on a New Green Hydrogel—Study on Working Parameters and Process Enhancement. Gels, 11. https://doi.org/10.3390/gels11010079

Smith, M., South, A., Gaulding, J., & Lyon, L. (2010). Monitoring the erosion of hydrolytically-degradable nanogels via multiangle light scattering coupled to asymmetrical flow field-flow fractionation. Analytical Chemistry, 82 2, 523–530. https://doi.org/10.1021/ac901725m

Sukchit, D., Prajuabsuk, M., Lumlong, S., Inntam, C., Punkvang, A., Wattanarach, S., Thavorniti, P., Jongsomjit, B., Wongyai, K., Gleeson, D., Shanmugam, P., Boonyuen, S., & Pungpo, P. (2025). Synthesis and Characterization of Zeolite A from Industrial Fly Ash as a Green, Cost-Effective Cd2+ and Pb2+ Adsorbent for Wastewater Applications. ACS Omega, 10, 5981–5992. https://doi.org/10.1021/acsomega.4c09990

Umejuru, E. C., Prabakaran, E., & Pillay, K. (2021). Coal Fly Ash Decorated with Graphene Oxide–Tungsten Oxide Nanocomposite for Rapid Removal of Pb2+ Ions and Reuse of Spent Adsorbent for Photocatalytic Degradation of Acetaminophen. ACS Omega, 6, 11155–11172. https://doi.org/10.1021/acsomega.0c04194

Visa, M., & Chelaru, A. M. (2014). Hydrothermally modified fly ash for heavy metals and dyes removal in advanced wastewater treatment. Applied Surface Science, 303, 14–22.

Wang, H., Hu, B., Li, H., Feng, G., Pan, S., Chen, Z., & Song, J. (2022). Biomimetic Mineralized Hydroxyapatite Nanofiber-Incorporated Methacrylated Gelatin Hydrogel with Improved Mechanical and Osteoinductive Performances for Bone Regeneration. International Journal of Nanomedicine, 17, 1511–1529. https://doi.org/10.2147/ijn.s354127

Wardhana, B. S., Hanum, F. F., Lestari, R. S., Rahayu, D. E., Amini, R., Kimia, M. T., Industri, F. T., Dahlan, U. A., & Selatan, J. R. (2025). Potensi Fly Ash dan Bottom Ash ( FABA ) sebagai Bahan Adsorben untuk Mengatasi Pencemaran Zat Warna Sintetis di Limbah Industri.

Wardhana, B. S., Hanum, F. F., Mufrodi, Z., Febriani, A. V., & Salamah, S. (2025). Comparison of Activation Methods for Coal Ash as an Adsorbent in the Removal of Lead ( Pb 2 + ) from Aqueous Solution. Jurnal Kimia Sains Dan Aplikasi, 28(8), 452–462.

Wardhana, B. S., Musnamar, A. A., Rahayu, D. E., Kimia, M. T., Industri, F. T., Dahlan, U. A., Selatan, J. R., & Yogyakarta, D. I. (2024). Pengolahan Air Limbah Industri : Pendekatan Metode Adsorpsi. Jurnal Kemuhammadiyahan Dan Integrasi Ilmu, 213–225.

Zhao, H., Xie, M., He, S., Lin, S., Wang, S., & Liu, X. (2025). Development of a Novel Nanoclay-Doped Hydrogel Adsorbent for Efficient Removal of Heavy Metal Ions and Organic Dyes from Wastewater. Gels, 11. https://doi.org/10.3390/gels11040287

Downloads

Published

2026-01-12

How to Cite

Lestari, R. S., Farrah Fadhillah Hanum, Maryudi, & Budi Setya Wardhana. (2026). Studi Awal Sintesis dan Evaluasi Kestabilan Hidrogel Komposit Fly Ash–Alginate untuk Adsorpsi Pb²⁺. Jurnal Ilmiah Teknik Kimia, 10(1), 68–79. https://doi.org/10.32493/jitk.v10i1.55444