
Jurnal Teknologi Sistem Informasi dan Aplikasi ISSN: 2654-3788

Penerbit: Program Studi Teknik Informatika Universitas Pamulang e-ISSN: 2654-4229

Vol. 7, No. 2, April 2024 (892-896) DOI: 10.32493/jtsi.v7i2.41654

http://openjournal.unpam.ac.id/index.php/JTSI 892

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0

International (CC BY-NC 4.0) License

Copyright © 2024 Normalisa, Pradana Atmadiputra, Jibran Wafi Prawiko

Comparing the Developmental Complexity of Different Game Engines by

Creating the Same Game Using Two Different Engines

Normalisa1, Pradana Atmadiputra2, Jibran Wafi Prawiko3

Department of Computer Science, International University Liaison Indonesia, Associate 7th Intermark,

BSD, 1530

e-mail: 1normalisa@iuli.ac.id, 2pradana.atmadiputra@iuli.ac.id, 3jibran wafi prawiko@stud.iuli.ac.id

Submitted Date: April 16th, 2024 Reviewed Date: April 23rd, 2024

Revised Date: April 27th, 2024 Accepted Date: April 30th, 2024

Abstract

Game development is often considered to be a vague topic. With many beginner programmers

interested in independent game development as an occupation, one must find out where should they start.

Determining a first game engine could be a difficult choice for someone, and many beginner programmers

hoped that their skills and early experiences could be utilized in the game development environment. Many

comparisons do not detail what makes one game engine more difficult to learn than the other, and would

only present vague terms such as because one engine can create a more complex game, yet it does not state

how that would affect a game engine’s learning curve. Research must be conducted to clear out this

vagueness. Inside a game is basically a series of objects interacting with one another. Therefore, it should

not be a problem when a developer switches between game engines, and yet these developers could have a

faster development time when using a different engine. The result of this research is to determine how that

difference is possible by comparing the developmental process of two different game engines (gamemaker

and Godot) and determine which one is objectively better than the other in specific terms.

Keyword: Comparison; Game; Game engine; Gamemaker, Godot.

1 Introduction

Since the release of the Atari 2600, video

games have become a mainstream media. It is a

complex form of art that consists of every other

type of entertainment and the development process

that made them. Behind most game releases are

designers, programmers, writers, artists, and

especially the game engine itself (Goh, Al-Tabbaa,

& Khan, 2023). Unreal engine is one of the earliest

engines that became popular in 1998 due to the first

game developed on it named being after that

engine.

However, at the time of Unreal Engine's

release, the video game industry was still

dominated by large companies like Valve and Id

Software. The idea of people outside these

companies developing their own games was not

prevalent until independent games became popular.

Independent games are generally a form of video

game release that was made by a small

development team, often ranging from 10-20

people. Since most game engines are only available

to the companies that made them such as the source

engine that belonged to Valve, and the Frostbite

engine that is owned by DICE, small independent

teams must rely on proprietary software to develop

their games, that was until game engines such as

Unity and CryEngine became available to the

public. Unity in particular, was one of the most

accessible game engines during its early years, and

was the main choice for many independent game

developers in the 2010s. An engine's popularity can

be observed by its marketing and the titles

developed by it. Unity’s great marketing itself can

be seen when the engine was first announced at the

Apple Worldwide Developers Conference as a

game engine for the Mac.

The purpose of the following research is to

compare the complexity between two different

game engines based on the engine’s popularity, the

list of features and programming functions,

complexity in managing objects and instances,

typing, and the estimated development time. while

also summarizing all the fundamentals of game

Jurnal Teknologi Sistem Informasi dan Aplikasi ISSN: 2654-3788

Penerbit: Program Studi Teknik Informatika Universitas Pamulang e-ISSN: 2654-4229

Vol. 7, No. 2, April 2024 (892-896) DOI: 10.32493/jtsi.v7i2.41654

http://openjournal.unpam.ac.id/index.php/JTSI 893

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0

International (CC BY-NC 4.0) License

Copyright © 2024 Normalisa, Pradana Atmadiputra, Jibran Wafi Prawiko

development at the same time. Therefore, The

Author could recommend which game engine

would be the most suitable for certain developers,

as well as summarizing the similarities between the

two engines in hopes of informing what kind of

phrases and terminologies a developer should

understand before proceeding to choose an engine

and create their game (Sobota & Pietrikova, 2023).

The purpose of the following research is to

compare the complexity between two different

game engines based on its number of features,

learning curve, programming knowledge,

performance, and overall development time, while

also summarizing all the fundamentals of game

development at the same time. Therefore, the

author could recommend which game engine

would be the most suitable for certain developers,

as well as summarizing the similarities between the

four engines in hopes of informing what kind of

phrases and terminologies a developer should

understand before proceeding to choose an engine

and create their game (Sobota & Pietrikova, 2023).

As time went on, Unity was no longer the

only game engine choice in the market, as more and

more different game engines kept being released.

Today, opensource engines, such as Godot implied

that anyone anywhere can develop their own game

without spending any money, however difficult it

might be. With competitions emerging left and

right, people are starting to compare game engines

with each other to see which engine might be the

most suitable for them.

2 Analysis

Ludologists study games from different

angles, such as their design, mechanics,

storytelling, aesthetics, culture, and history. Game

development could be considered as Ludology.

They are also interested in different types of

gamers, how they interact with games, and how

games impact their behaviour, attitudes, and

perception of the world (Barg, 2024).

3 Methodology

Shaun Spalding’ theory is supported when

observing the number of early games throughout

history that were developed only by including what

was mentioned (Shapiro, 2021). Some examples

include score-based arcade games such as Pac-Man

and Galaga, and also simple rogue-like games such

as Vampire Survivors. These essential features

became the criteria mentioned by The Author that

needed to be satisfied before a comparison can be

made in later chapters (Pierce, 2023).

Table 1 List Requirements

ID Feature Application Requirement

1

Player

Movement

Utilize the vector from the

game engine

Create the horizontal speed

and vertical speed variable

for the player object

Add and assign keyboard

input the horizontal and

vertical speed of the player

object

2

Walls,

Collisions,

and

Hitboxes

Add a wall object and place

inside the room

Stop player object movement

when player object collides

with a wall obejct

Restrict vertical movement

by decreasing the y axis with

a gravity value

3 Enemies Add enemies in the game

with the same horizontal and

vertical speed principals as

the player

4 Player

Attack

To edit the collision hitbox

for objects

5

Health

The player object shall be

able to detect collisions

against an enemy object

Make the player die after a

collisions with the enemy has

been detected

6 Player and

Enemy

Animations

Add animations for player

and enemy movement

Assign a sprite to an object

7

Camera

Create a camera that follows

the player object

To customize the camera's

speed, size, and position in

the room

8

Levels

To place and/or manage the

objects in separate layers in

the room

Create multiple levels with an

interconnected path

9 Menu

Screen

Create a menu screen with

options to start the game or

quit the game

Jurnal Teknologi Sistem Informasi dan Aplikasi ISSN: 2654-3788

Penerbit: Program Studi Teknik Informatika Universitas Pamulang e-ISSN: 2654-4229

Vol. 7, No. 2, April 2024 (892-896) DOI: 10.32493/jtsi.v7i2.41654

http://openjournal.unpam.ac.id/index.php/JTSI 894

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0

International (CC BY-NC 4.0) License

Copyright © 2024 Normalisa, Pradana Atmadiputra, Jibran Wafi Prawiko

Figure 1. Menu screen flowchart

Menu screens act similarly to levels, since

both are rooms in a game. Although this room

should supposedly be what the player first

witnesses when playing the game.

4 Result

The first category is the score of the titles

made by the engine. This comparison is conducted

by selecting five most popular 2D game titles made

from each engine, and comparing its overall critical

score and reception from metacritic, while also

observing how many platforms the selected titles

have been released in (Christopoulou & Xinogalos,

2021).

The data for this comparison is taken from

the Steam and metacritic page of each title. Since

Steam reception cannot be measured by numbers,

it is only viable to measure the amount of people

reviewing it rather than the game’s critical score

(Jonduke, 2020).

Most popular titles developed in Gamemaker

according to the official site:

Figure 2. Gamemaker-made games ratings

Average metascore critic review: 86.3

Average metascore user review: 85.3

Total steam review: 240,742

Most popular titles developed in Godot

according to the official site:

Jurnal Teknologi Sistem Informasi dan Aplikasi ISSN: 2654-3788

Penerbit: Program Studi Teknik Informatika Universitas Pamulang e-ISSN: 2654-4229

Vol. 7, No. 2, April 2024 (892-896) DOI: 10.32493/jtsi.v7i2.41654

http://openjournal.unpam.ac.id/index.php/JTSI 895

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0

International (CC BY-NC 4.0) License

Copyright © 2024 Normalisa, Pradana Atmadiputra, Jibran Wafi Prawiko

Figure 3. Godot-made games ratings

Average metascore critic review: 72.2

Average metascore user review: 84

Total steam review: 45,307

As seen from the image above, the titles

developed by the Gamemaker engine don’t just

have a higher average user and critic score, but also

have a higher total number of reviews. Which

makes Gameamker a more popular engine than

Godot in the gaming community. The importance

of product reception by its user score can promote

the makings of that product. This is observed by the

amount of posts in forums that ask for which game

engine is used to develop Undertale and Katana

Zero, while there are no posts regarding the

development of Brotato, Dome Keeper, or Primal

Light.

Considering the result in the development

timeline that presents Godot with a shorter learning

time than Gamemaker. It shows that Godot's object

oriented programming approach allows for more

features to be added in the game engine which

makes a faster development time, but not

necessarily an easier one. Gamemaker's more

straightforward approach that replicates

visualbased sequences makes for a shorter learning

time, but a longer development time. For example,

sprites in Gamemaker need to be uploaded one by

one, while Godot allows. to have sprites remain in

a spritesheet. Both engines have dynamic

programming languages. But Godot has a stronger

programming typing, which is best used for large

scale projects that focus on maintainability. The

application made on this research is not considered

to be a large project. It only covers the the basics

and fundamentals of the game development process

which technically will make development in

Gamemaker faster than Godot. However, this

statement only means that development in Godot

will be faster if it was a larger game. However,

there is a lack of focus in Godot because everything

cannot be managed by code, which means it is a

requirement for programmers to learn other skills

such as animation, rendering, and advanced

calculus in order to understand Godot as a whole.

Whereas it is the opposite for Gamemaker. Every

measurement speed size scale is all set inside the

code. This is the reason why development in

Gamemaker will take longer for larger projects.

Figure 4. Gamemaker and Godot development

time graph

This comparison can be summarized by the

graphs above that represents the development time

for Godot (represented by the right graph) and

Gamemaker (represented by the left graph).

Jurnal Teknologi Sistem Informasi dan Aplikasi ISSN: 2654-3788

Penerbit: Program Studi Teknik Informatika Universitas Pamulang e-ISSN: 2654-4229

Vol. 7, No. 2, April 2024 (892-896) DOI: 10.32493/jtsi.v7i2.41654

http://openjournal.unpam.ac.id/index.php/JTSI 896

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0

International (CC BY-NC 4.0) License

Copyright © 2024 Normalisa, Pradana Atmadiputra, Jibran Wafi Prawiko

5 Conclusion

Based on the results received at the

development process, here are the things that are

the results concluded in this research. Recreating an

already existing game is more difficult than

creating an original game, There is a lack of focus

in Godot because everything cannot be managed by

code alone, which means it is a requirement for

programmers to learn other skills such as

animation, rendering, and advanced calculus in

order to understand Godot as a whole. whereas

Gamemaker is the opposite. Gamemaker is an

engine that is dependent on code more than Godot,

which resulted in a longer development time,

because every attribute and measurements of an

object needs to be set inside the script of an event.

Mastering Godot will not decrease the amount of

difficulty when a developer switches into

Gamemaker for the first time. The same can be said

for the latter. Since the properties of a node in a

Godot engine can be edited by a variety of methods,

game development using Godot is more preferrable

when it is utilized by a large team that consists of

animators, programmers, sound engineers, etc. who

understood those methods. A Godot scene could

only have one node with a script attach to it to

determine its behaviour and mechanic, or it may

only be utilized as a parent node that inherit other

scenes, or it may consist of an animation-based

node, a collision-based node, and a shader-based

node at the same time. These situations indicates a

need for larger teams that is divided to develop

different mechanics of the game in Godot. On the

other hand, Gamemaker is not a preferrable choice

for a large team, being that the process of

developing certain mechanics such as a healthbar,

player movement, enemy behaviour, and wall

collisions have the same principle of creating a new

object, assigning a sprite to that object, adding code

to the event of that object, and place that object in

the room where it will be a part of the gameplay.

This might made Gamemaker’s lack of features to

be its biggest strength, which makes early

developers who are learning Gamemaker to only

require to master fewer features of the engine

compared to Godot that can be done by a smaller

team, even if with the cost of a longer development

time in Gamemaker.

References
Barg, M. (2024). Ludo-Hermeneutics: The

Interpretation of Digital Games Exemplified in

the Puzzle Game Portal. Stockholm:

Stockholm University.

Christopoulou, E., & Xinogalos, S. (2021). Overview

and Comparative Analysis of Game Engines

for Desktop and Mobile Devices.

ResearchGate, 21-36.

Goh, E., Al-Tabbaa, O., & Khan, Z. (2023). Unravelling

the complexity of the Video Game Industry: An

integrative framework and future research

directions. Elsevier, 12(12), 1-18.

Jonduke. (2020). Analyzing Steam Reviews and Users

Data. Medium, 1-8.

Pierce, M. (2023). The simple game that keeps on

giving. Medium, 1-4.

Shapiro, L. (2021, June 25). Embodied Cognition .

Stanford Encyclopedia of Philosophy, pp. 1-11.

Sobota, B., & Pietrikova, E. (2023). The Role of Game

Engines in Game Development and Teaching.

intechopen, 6-30.

Verbeke, W., Dejaeger, K., Martens, D., Hur, J., &

Baesens, B. (2012). New Insights into Churn

Prediction in the Telecommunication Sector: A

Profit Driven Data Mining Approach.

European Journal of Operational Research,

218(1), 211-229.

doi:10.1016/j.ejor.2011.09.031
Witten, I. H., Frank, E., & Hall, M. A. (2011). Data

Mining: Practical Machine Learning Tools and

Techniques (3rd ed.). Burlington: Morgan

Kaufmann.

Yap, B. W., Rani, K. A., Rahman, H. A., Fong, S.,

Khairudin, Z., & Abdullah, N. N. (2014). An

Application of Oversampling, Undersampling,

Bagging and Boosting in Handling Imbalanced

Datasets. Proceedings of the First

International Conference on Advanced Data

and Information Engineering (DaEng-2013).

285, pp. 13-22. Singapore: Springer.

doi:10.1007/978-981-4585-18-7_2

