Pengujian Black Box pada Aplikasi Keamanan Data Multimedia Message Service (MMS) Berbasis Android Menggunakan Teknik Equivalence Partitions

Abdul Aziz¹

¹Pusat Teknologi Penerbangan, LAPAN, Bogor, Indonesia, 16350 e-mail: ¹abdul.aziz@lapan.go.id

Submitted Date: January 12th, 2020 Revised Date: March 31st, 2021 Reviewed Date: January 13th, 2021 Accepted Date: April 01st, 2021

Abstract

Currently, almost everyone has used electronic devices in which there are applications that have been installed. To meet user satisfaction, this application must go through a testing process to check all errors in the system so that they can be fixed later. This test is performed on a previously created Data Security Application. Software testing that has been done is using the Black Box method with the Equivalence Partition technique. From the test results, it was found that cases that need to be fixed are the fields in the Create Message Form.

Keywords: Application; Testing; Black Box; Equivalence partitioning

Abstrak

Saat ini hampir setiap orang telah menggunakan perangkat elektronik yang didalamnya terdapat aplikasi yang telah terpasang. Untuk memenuhi kepuasan penggunanya, aplikasi ini harus melalui proses pengujian untuk memeriksa semua kesalahan yang ada pada sistem agar dapat diperbaiki nantinya. Pengujian ini dilakukan pada Aplikasi Keamanan Data yang telah dibuat sebelumnya. Pengujian perangkat lunak yang telah dilakukan yaitu menggunakan metode *Black Box* dengan teknik *Equivalence Partition*. Dari hasil pengujian ditemukan kasus yang perlu diperbaiki yaitu kolom isian pada *Form* Buat Pesan.

Kata Kunci: Aplikasi; Testing; Black Box; Equivalence partitioning

1. Pendahuluan

Pada masa milenial ini, hampir semua orang telah mengenal *gadget* atau perangkat elektronik. Untuk dapat menjalankan sistem yang ada pada perangkat tersebut diperlukan namanya perangkat lunak. Perangkat lunak yang terdapat pada perangkat tersebut salah satunya yaitu aplikasi.

Untuk menentukan aplikasi dapat berjalan dengan baik salah satunya dengan melakukan pengujian. Pengujian perangkat lunak adalah cara untuk mendapatkan informasi mengenai kualitas dari perangkat lunak yang sedang diuji (Sulistyanto & Azhari, 2014). Pengujian pada sebuah program sangat penting untuk dilakukan untuk memeriksa semua kesalahan yang ada pada program tersebut agar tidak terjadi kerugian yang akan ditimbulkan dari kesalahan tersebut, sehingga sangat perlu untuk melakukan pengujian untuk mengurangi terjadinya kesalahan yang

merugikan tersebut (Ningrum, Suherman, Arvanti, Prasetva, & Saifudin, 2019). Pengujian perangkat lunak dilakukan untuk mendeteksi adanya kesalahan. menyebabkan kegagalan yang perangkat lunak (Irawan, 2017). Pengujian perangkat lunak juga bertujuan untuk memperoleh produk yang berkualitas yang memberikan produktivitas tinggi. Dalam proses pengujian perangkat lunak, untuk setiap kasus yang akan diuji harus memiliki identitas dan mempunyai keterhubungan antara sekumpulan masukan dengan hasil yang diinginkan (Komarudin MZ, 2016). Kepuasan pelanggan tergantung pada kualitas perangkat lunak dan kualitas sejumlah perangkat lunak perlu dijaga dengan beberapa alasan (Cholifah, Yulianingsih, & Sagita, 2018).

Pengujian aplikasi ini menggunakan metode Black Box. Black Box adalah teknik pengujian yang berfokus pada spesifikasi fungsional dari perangkat lunak, penguji dapat mendefinisikan kumpulan kondisi masukan dan melakukan pengetesan pada spesifikasi fungsional program (Hidayat & Muttaqin, 2018). Metode Black Box Testing adalah sebuah metode yang digunakan untuk menguji sebuah perangkat lunak tanpa harus memperhatikan hal detail perangkat lunak. Pengujian ini hanya memeriksa nilai keluaran berdasarkan nilai masukan masing-masing (Hanifah, Alit, & Sugiarto, 2016). Tujuan Black *Box Testing* untuk menunjukkan fungsi perangkat lunak tentang cara beroperasinya, apakah keluaran pemasukan data telah berjalan sebagaimana yang telah diharapkan dan apakah informasi yang disimpan serta eksternal selalu dijaga kemutakhirannya (Maharani & Merlina, 2014).

Dalam melakukan pengujian black box menggunakan teknik *Equivalence Partitions*. *Metode Equivalence Partitions* adalah metode pengujian *Black Box* yg memecah atau membagi domain masukan dari program ke dalam kelaskelas data sehingga *Test Case* dapat diperoleh (Krismadi, et al., 2019).

2. Metodologi

Dalam penelitian ini akan dilakukan beberapa tahapan. Pada tahapan pertama yaitu dengan membuat rancangan *test case* berdasarkan fungsi yang ada dalam pengujian aplikasi. Lalu membuat batasan pengujian Equivalence Partioning, setelah itu membuat Batasan pengujian, dan langkah selanjutnya adalah membuat model pengujian dari skenario pengujian dan hasil yang diharapkan, dan yang terakhir yaitu melakukan pengujian berdasarkan model yang telah dirancang pada rancangan test case. Hal ini dilakukan untuk mendapatkan data berupa dokumentasi pengujian dengan metode *Equivalence Partitions* dan nilai tingkat efektifitas metode *Equivalence Partitions* (Jaya, Gumilang, Wati, Andersen, & Desyani, 2019).

Pada Gambar 1 menampilkan Form Generate Key yang berfungsi untuk membangkitkan kunci secara otomatis oleh sistem yang akan digunakan untuk proses enkripsi dan dekripsi kunci blowfish. Kunci yang dibangkitkan yaitu kunci e, kunci d dan modulus. Kunci e dan modulus akan digunakan untuk proses enkripsi kunci blowfish menggunakan algoritma RSA. Sedangkan untuk proses dekripsi kunci blowfish menggunakan kunci d dan modulus.

🙃 Generate Kunci	?
🔒 Kunci E	
🔒 Kunci D	
🔒 Modulus	
Generate Key	
	-

Gambar 1. Form Generate Key

Berdasarkan form pada Gambar 1 terdapat rencana pengujian yaitu dengan menekan tombol "Generate Key", dan sistem secara otomatis akan menampilkan kunci e, kunci d dan modulus sesuai kolom yang tersedia. Jika salah satu kolom tidak muncul kunci, maka terdapat *error* pada sistem tersebut.

Table 1. Rancangan Test Case Form Generate Key

Id	Deskripsi	Hasil yang diharapkan
A01	Klik tombol "Generate Key"	Sistem akan menampilkan Kunci E, Kunci D dan Modulus

Pada Gambar 2 menampilkan *Form* Buat Pesan yang berfungsi untuk melakukan proses enkripsi sebelum pesan dikirimkan. Proses enkripsi yang dilakukan oleh sistem pertama kali yaitu dengan mengenkripsi *file* menggunakan algoritma *blowfish*, lalu kunci yang digunakan untuk mengenkripsi file, dienkripsi menggunakan algoritma RSA.

Buat Pesan	S ?
🛞 URL	
Attach File	
🔒 Kunci Blowfish	
🔒 Kunci E	
A Modulus	
Enkripsi	
Chipertext	
Kirim	

Berdasarkan Gambar 2 terdapat beberapa rencana pengujian. Semua kolom isian tidak boleh dibiarkan kosong. Pada kolom URL diisi dengan berkas *microsoft office* seperti *microsoft word* dan *microsoft power point*. Pada kolom kunci *blowfish* diisi teks dengan maksimal 4 karakter. Pada kolom kunci e dan modulus diisi dengan angka yang telah dibangkitkan sebelumnya pada *form generate key*.

Gambar 2. Form Buat Pesan

Table 2.	Rancangan	Test Case	Form	Buat Pesan
1 4010 2.	rtuneungun	rest Cuse	1 01111	Duat I couli

Id	Deskripsi	Hasil yang diharapkan
B01	Mengisi URL dengan file "Test 1.doc", lalu masukkan sandi	File dan sandi terenkripsi
	"teknik" pada "Kunci Blowfish", masukkan "35879" pada	menjadi chipertext
	kunci e, dan masukkan "101282707725116301" pada	
	modulus, setelah itu tekan tombol "Enkripsi"	
B02	Mengosongkan URL, lalu masukkan sandi "teknik" pada	Sistem tidak akan melakukan
	"Kunci Blowfish", masukkan "35879" pada kunci e, dan	enkripsi
	masukkan "101282707725116301" pada modulus, setelah	
	itu tekan tombol "Enkripsi"	
B03	Mengisi URL dengan file "Test 1.doc", lalu mengosongkan	Sistem tidak akan melakukan
	sandi pada "Kunci Blowfish", masukkan "35879" pada	enkripsi
	kunci e, dan masukkan "101282707725116301" pada	
	modulus, setelah itu tekan tombol "Enkripsi"	
B04	Jika proses berhasil dilakukan, lalu klik tombol "Kirim"	Sistem akan menampilkan
		halaman Kirim Pesan

Pada Gambar 3 menampilkan *Form* Kirim Pesan yang berfungsi untuk mengirimkan pesan *chipertext* dari hasil enkripsi pada form buat pesan.

🙃 Buat Pesan	Ç ?
🖉 Number	
293312404	>

Gambar 3. Form Kirim Pesan

Berdasarkan form pada Gambar 3 terdapat beberapa rencana pengujian. Pada kolom number diisi dengan nomor telepon yang akan dituju. Kolom number tidak boleh dibiarkan kosong. Sedangkan pada kolom pesan merupakan *chipertext* yang telah dienkripsi sebelumnya.

Gambar	4	Form	Kotak	Masuk
Gambai	т.	ronn	ROTAK	wiasun

Id	Deskripsi	Hasil yang diharapkan
C01	Mengisi "0896xxxxxxx" pada "Number", setelah itu tekan	Pesan dapat terkirim pada
	ikon tombol kirim	nomor yang dituju
C02	Mengosongkan "Number", setelah itu tekan ikon tombol	Sistem akan memberi
	kirim	informasi peringatan

Pada Gambar 4 menampilkan Form Kotak Masuk yang berfungsi untuk menerima *chipertext* kunci blowfish untuk digunakan nantinya pada proses dekripsi *file*.

Berdasarkan halaman pada Gambar 4 terdapat rencana pengujian yaitu dengan menekan tombol "Dekripsi", dan sistem secara otomatis akan menampilkan halaman Form Dekripsi Pesan.

ruore in runeungun rest euser rorni riotun niusun	Table 4. Rancangan Tes	st Case Form Kotak Masuk
---	------------------------	--------------------------

Id	Deskripsi	Hasil yang diharapkan
D01	Klik tombol "Dekripsi"	Sistem akan menampilkan
		halaman Dekripsi Pesan

Pada Gambar 5 menampilkan *Form* Dekripsi Pesan yang berfungsi untuk melakukan proses dekripsi *file* dengan sandi yang telah diterima. Sandi yang diterima tersebut dalam bentuk *chipertext* atau dalam kondisi terenkripsi dan diperlukan proses dekripsi terlebih dahulu menggunakan algoritma RSA. Setelah sandi berhasil didekripsi maka sandi dapat digunakan untuk mendekripsi file yang telah terenkripsi.

👶 Zizs XL	ි ?
🛞 URL	
Attach File	
Kunci D	
Modulus	
293312404	
Dekripsi	

Gambar 5. Form Dekripsi Pesan

Berdasarkan Gambar 5 terdapat beberapa rencana pengujian. Semua kolom isian tidak boleh dibiarkan kosong. Pada kolom URL diisi dengan berkas *microsoft office* yang telah terenkripsi sebelumnya. Pada kunci d dan modulus diisi dengan kunci yang telah dibangkitkan oleh pengirim pesan.

Id	Deskripsi	Hasil yang diharapkan	
E01	Mengisi URL dengan file "Encrypt Test 1.doc", lalu	Chipertext menjadi plaintext	
	masukkan "501487583030282559" pada kunci d, dan	dan mendekripsi File menjadi	
	masukkan "101282707725116301" pada modulus, setelah	plaintext	
	itu tekan tombol "Dekripsi"		
E02	Mengosongkan URL, lalu masukkan	Sistem tidak akan melakukan	
	"501487583030282559" pada kunci d, dan masukkan	dekripsi	
	"101282707725116301" pada modulus, setelah itu tekan		
	tombol "Dekripsi"		

3. Hasil dan Pembahasan

Setelah melakukan perancangan pengujian, maka tahapan selanjutnya yaitu melakukan

pengujian untuk menentukan sistem dapat berjalan sesuai dengan harapan yang direncanakan.

Id	Deskripsi	Hasil yang diharapkan	Hasil Pengujian	Kesimpulan
A01	Klik tombol "Generate Key"	Sistem akan		Berhasil
		menampilkan Kunci E,		
		Kunci D dan Modulus		
B01	Mengisi URL dengan file "Test	File dan sandi terenkripsi	File dan sandi	Berhasil
	1.doc", lalu masukkan sandi "teknik	menjadi chipertext	terenkripsi.	
	" pada "Kunci Blowfish", masukkan		Chipertext sandi	
	"35879" pada kunci e, dan masukkan		ditampilkan pada	
	"101282707725116301" pada		Form Buat Pesan	
	modulus, setelah itu tekan tombol			
	"Enkripsi"			
B02	Mengosongkan URL, lalu masukkan	Sistem tidak akan	Muncul toast	Berhasil
	sandi "teknik" pada "Kunci	melakukan enkripsi	"URL tidak boleh	
	Blowfish", masukkan "35879" pada	-	kosong"	
	kunci e, dan masukkan			
	"101282707725116301" pada			
	modulus, setelah itu tekan tombol			

 Table 6. Hasil Pengujian Equivalence Partitioning

	"Enkripsi"			
B03	Mengisi URL dengan file "Test 1.doc", lalu mengosongkan sandi pada "Kunci Blowfish", masukkan "35879" pada kunci e, dan masukkan "101282707725116301" pada modulus, setelah itu tekan tombol "Enkripsi"	Sistem tidak akan melakukan enkripsi	Muncul <i>toast</i> "Sandi tidak boleh kosong"	Berhasil
B04	Jika proses berhasil dilakukan, lalu klik tombol "Kirim"	Sistem akan menampilkan halaman Kirim Pesan	MunculformKirimPesan yangberisichipertextsandipadapesan	Berhasil
C01	Mengisi "0896xxxxxxx" pada "Number", setelah itu tekan ikon tombol kirim	Pesan dapat terkirim pada nomor yang dituju	Pesan berhasil terkirim dan dapat diterima oleh nomor yang dituju	Berhasil
C02	Mengosongkan "Number", setelah itu tekan ikon tombol kirim	Sistem akan memberi informasi peringatan	Muncul <i>toast</i> "Number tidak boleh kosong"	Berhasil
D01	Klik tombol "Dekripsi"	Sistem akan menampilkan halaman Dekripsi Pesan	Muncul form Dekripsi Pesan yang berisi terusan pesan dari kotak masuk	Berhasil
E01	Mengisi URL dengan file "Encrypt Test 1.doc", lalu masukkan "501487583030282559" pada kunci d, dan masukkan "101282707725116301" pada modulus, setelah itu tekan tombol "Dekripsi"	Chipertext menjadi plaintext dan mendekripsi File menjadi plaintext	File dapat dibuka dan terbaca	Berhasil
E02	Mengosongkan URL, lalu masukkan "501487583030282559" pada kunci d, dan masukkan "101282707725116301" pada modulus, setelah itu tekan tombol "Dekripsi"	Sistem tidak akan melakukan dekripsi	Muncul toast "URL tidak boleh kosong"	Berhasil

Pada aplikasi keamanan data ini, telah dilakukan pengujian pada 5 form atau halaman aplikasi. Pada Form *Generate Key* dilakukan pengujian sebanyak sekali. Pada Form Buat Pesan dilakukan pengujian sebanyak 4 kali. Pada Form Kirim Pesan dilakukan pengujian sebanyak 2 kali. Pada Form Kotak Masuk dilakukan pengujian sebanyak sekali. Pada Form Dekripsi Pesan dilakukan pengujian sebanyak 2 kali. Jadi total pengujian yang telah dilakukan yaitu sebanyak 10 kali pengujian.

4. Kesimpulan

Dari hasil pengujian yang telah dilakukan dapat disimpulkan bahwa aplikasi keamanan data telah berjalan sesuai dengan harapan yang diinginkan. Namun saat proses pengujian berlangsung, terdapat *case* yang perlu diperbaiki agar sistem semakin baik yaitu pada form isian kunci *blowfish* yang hanya dapat menerima 4 karakter isian. Jadi pengujian *black box* dengan menggunakan teknik *equivalance partitions* dapat membantu proses pembuatan kasus pengujian dan menentukan kualitas sistem dan menemukan kesalahan yang ada, serta menjamin aplikasi yang diuji sesuai dengan harapan yang diinginkan.

5. Saran

Dari hasil pengujian yang dilakukan, teknik equivalance partitions dapat membantu untuk menentukan kualitas dari sistem dan menemukan kesalahan yang ada. Adapun saran untuk penelitian selanjutnya yaitu dengan memperbanyak kasus uji yang dilakukan, agar semakin banyak kesempatan celah yang dapat ditemukan pada sistem aplikasi tersebut untuk dapat diperbaiki.

References

- Cholifah, W. N., Yulianingsih, & Sagita, S. M. (2018). Pengujian Black Box Testing pada Aplikasi Action & Strategy Berbasis Android dengan Teknologi Phonegap. Jurnal String, 206-210.
- Hanifah, U., Alit, R., & Sugiarto. (2016). Penggunaan Metode Black Box Pada Pengujian Sistem Informasi Surat Keluar Masuk. *SCAN*, 33-40.
- Hidayat, T., & Muttaqin, M. (2018). Pengujian Sistem Informasi Pendaftaran dan Pembayaran Wisuda Online menggunakan Black Box Testing dengan Metode Equivalence Partitioning dan Boundary Value Analysis. Jurnal Teknik Informatika UNIS, 25-29.
- Irawan, Y. (2017). Pengujian Sistem Informasi Pengelolaan Pelatihan Kerja Upt. BLK Kabupaten Kudus dengan Metode Whitebox Testing. Sentra Penelitian Engineering dan Edukasi, 1-5.
- Jaya, M. S., Gumilang, P., Wati, T., Andersen, Y. P., & Desyani, T. (2019). Pengujian Black Box pada Aplikasi Sistem Penunjang Keputusan Seleksi Calon Pegawai Negeri Sipil Menggunakan

Teknik Equivalence Partitions. Jurnal Informatika Universitas Panulang, 131-136.

- Komarudin MZ, M. (2016). Pengujian Perangkat Lunak Metode Black-Box Berbasis Equivalence Partitions Pada Aplikasi Sistem Informasi Sekolah. *Jurnal Mikrotik*, 1-18.
- Krismadi, A., Lestari, A. F., Pitriyah, A., Mardangga, I.
 W., Astuti, M., & Saifudin, A. (2019).
 Pengujian Black Box berbasis Equivalence
 Partitions pada Aplikasi Seleksi Promosi
 Kenaikan Jabatan. Jurnal Teknologi Sistem
 Informasi dan Aplikasi, 155-161.
- Maharani, M., & Merlina, N. (2014). Penerapan Metode Straight Selection Pada Sistem Parkir Universitas Bina Nusantara. Jurnal Pilar Nusa Mandiri, 95-100.
- Ningrum, F. C., Suherman, D., Aryanti, S., Prasetya, H. A., & Saifudin, A. (2019). Pengujian Black Box pada Aplikasi Sistem Seleksi Sales Terbaik Menggunakan Teknik Equivalence Partitions. Jurnal Informatika Universitas Pamulang, 125-130.
- Sulistyanto, H., & Azhari. (2014). Urgensi Pengujian Pada Kemajuan Perangkat Lunak Dalam Multi Perspektif. Jurnal Komunikasi dan Teknologi Informasi, 1-10.