Penggunaan Data Mining untuk Analisis Pola Pembelian Pelanggan Menggunakan Metode Association Rule Algoritma Apriori (Studi Kasus di Toko Waspada)
Keywords:
Data Mining, Association Rule, Apriori AlgorithmAbstract
Alert Shop is a store that sells a variety of products such as household items, daily necessities, accessories, and cosmetics. Analyze customer buying behavior with Alert Store bulk transaction data.. The Apriori algorithm is one of the algorithms for extracting correlation rules in the field of data mining. We apply the Apriori algorithm by using Rapid Miner to find customer buying patterns in Waspada Store sales transaction data. The methodology of this research is structured to serve as a reference for the researcher's guidance and support to the researcher in the research process, and the research design plays an important role in guiding the researcher from problem description to testing result. The rules used by the a priori algorithm can be used as criteria to evaluate elements that meet the minimum support and minimum confidence values. The confidence value of the relationship between the two points above can be considered high, and the results of these rules can be used as the basis for discussing the points above.
References
Adinugroho, S., & Sari, Y. A. (2018). Associaton Rule. In Implementasi Data Mining Menggunakan Weka (pp. 127–144). UB Press.
Fitriati, D. (2016). Implementasi Data Mining untuk Menentukan. 2(1), 472–480. http://ars.ilkom.unsri.ac.id472
Han, J., & Kember, M. (2011). Data Mining Concept and Technique. Morgan Kauffman.
Informatika, J. R. (2019). Penerapan Data Mining Terhadap Penjualan Pipa Pada CV 1(4), 167–172.
Jiwei, H., Kamber, M., & Pei, J. (2011). Data Mining: Concept and Techniques. Elseiver.
Komaruddin. (2001). Pengertian Analisis Menurut Para Ahli, KBBI dan Secara Umum. https://www.zonareferensi.com/pengertian-analisis-menurut- paraahli-dan-secara- umum/
Kusrini, & Luthfi, E. T. (2019). Algoritma A Apriori. In T. A. Prabawati (Ed.), Algoritma Data Mining (pp. 149–156). Cv Andi Offset.
Larose, D. T. (2015). Discovering Knowledge in Data: An Introduction to Data Mining. John Willey & Sons, Inc.
Lestari, N. (2017). Penerapan Data Mining Algoritma Apriori Dalam Sistem Informasi Penjualan. Jurnal Edik Informatika, 103–111.
Megayasa, I. G. P., Agus, I. K., Aryanto, A., Diputra, I. G. S., Arianta, I. N., & Rusditya, S. (2016). Implementasi Algoritma Apriori untuk Menganalisis Pola Pembelian Konsumen pada Produk SPA. Senapati, 206–210.
Sepri, D., Afdal, M., & Riau, S. (2017). Analisa Dan Perbandingan Metode Algoritma Apriori Dan Fp- Growth Untuk Mencari Pola Daerah Strategis Pengenalan Kampus Studi Kasus Di Stkip Adzkia Padang. Jurnal Sistem Informasi Kaputama (JSIK), 1(1).
Srikanti, E., Yansi, R. F., Norhavina, Permana, I., & Salisah, F. N. (2018). Penerapan Algoritma Apriori untuk Mencari Aturan Asosiasi pada Data Peminjaman Buku di Perpustakaan. Jurnal Ilmiah Rekayasa Dan Manajemen Sistem Informasi, 4(1), 77– 80.
Tana, M. P., Marisa, F., Wijaya, I. D., Informatika, J. T., & Widyagama, F. T. U. (2018). Penerapan Metode Data Mining Market Basket Analysis Terhadap Data Penjualan Produk Pada Toko Oase Menggunakan Algoritma Apriori. 3(2), 17–22.
Turban, E., & dkk. (2015). Decision Support System and Intelligent Systems. AndiOffset.
Yanto, R., & Khoiriah, R. (2015). Implementasi Data Mining dengan Metode Algoritma Apriori dalam Menentukan Pola Pembelian Obat. 102–113.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Mohamad Gusmil Saparudin, Sholihin Sholihin
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Teknologi Sistem Informasi dan Aplikasi have CC BY-NC or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work.
In developing strategy and setting priorities, Jurnal Teknologi Sistem Informasi dan Aplikasi recognize that free access is better than priced access, libre access is better than free access, and libre under CC BY-NC or the equivalent is better than libre under more restrictive open licenses. We should achieve what we can when we can. We should not delay achieving free in order to achieve libre, and we should not stop with free when we can achieve libre.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License
YOU ARE FREE TO:
- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms