Penerapan Deep Learning untuk Klasifikasi Buah Menggunakan Algoritma Convolutional Neural Network (CNN)

Authors

Keywords:

Fruit, Classification, Convolutional Neural Network, MobileNetV1

Abstract

The fruit is the part of the plant that is embedded in the soil so that it grows large, fleshy and has a lot of water content. There are about 295,383 species of seed plants that can produce fruit. By utilizing artificial intelligence, especially deep learning, it will make it easier to classify fruit. In this study, researchers used the Convolutional Neural Network (CNN) algorithm with the MobileNetV1 architecture to produce a fruit classification model. The data used is the fruit dataset from the Kaggle platform, namely the fruit 360 dataset. The data consists of 10 types of fruit (Avocado, Apple, Orange, Lemon, Lime, Mango, Pineapple, Banana, Watermelon and Strawberry) with 4729 training images and 1586 image testing image with a size of 100×100 pixels which has been converted to a size of 224×224 pixels. The stages of this research started with preparing fruit image datasets, preprocessing datasets, namely resizing images, modeling the Convolutional Neural Network (CNN) architecture using the MobileNetV1 architecture. The results of this study can classify fruit into 10 classes into a model and labels, producing a fruit classification model with 100% accuracy in model testing of training data and 100% accuracy in model testing of data testing.

Author Biography

Shandi Noris, Universitas Pamulang

I am a lecturer at Informatics Engineering, Pamulang University. My current research interests include software engineering, Computer Networking, intelligent systems, and machine learning.

Publication:

SCOPUS ID: 57421561900

Researcher ID: AAE-2633-2022

SINTA ID: 6654669

Google Scholar ID: KFAh_PsAAAAJ

ORCID ID: 0000-0001-6012-6551

Garuda ID: 2027428

References

Asti, R. P. (2016). Pengolahan citra dengan menggunakan web cam pada kendaraan bergerak di jalan raya. 1, 1–6.

Awangga, R. M., & Batubara, N. A. (2020). Tutorial Object Detection Plate Number With Convolution Neural Network (CNN) (Ke-1; R. M. Awangga & N. A. Batubara, Eds.). Bandung: CV. Kreatif Industri Nusantara.

Christenhusz, M. J. M., & Byng, J. W. (2016). The number of known plants species in the world and its annual increase. Phytotaxa, 261(3), 201–217. https://doi.org/10.11646/phytotaxa.261.3.1

Hasyim. (2019). Mengenal Buah-Buahan Eksotik Kuta Kartenegara (Ke-1; M. I. Subaktiar, Ed.). Gresik: CV. Jendela Sastra Indonesia Press.

Kadir, A. (2018). Dasar Pemograman Python 3 - Panduan untuk Mempelajari Python dengan Cepat dan Mudah bagi Pemula (Maya, Ed.). Yogyakarta: CV. ANDI OFFSET.

Lumabiang, V. M., Andris, C., Manaha, L., & Liem, A. T. (2019). Prototipe Pendeteksi Object Mengguanakan Computer Vision Dan Raspberry Pi. 1341–1351.

Prianggara, F. W., Setiawan, A. B., & Farida, I. N. (2020). Identifkasi Jenis Buah Apel Berdasarkan Ekstraksi Bentuk dan Warna.

Randles, B. M., Pasquetto, I. V., Golshan, M. S., & Borgman, C. L. (2017). Using the Jupyter Notebook as a Tool for Open Science: An Empirical Study. Proceedings of the ACM/IEEE Joint Conference on Digital Libraries. https://doi.org/10.1109/JCDL.2017.7991618

Roihan, A., Sunarya, P. A., & Rafika, A. S. (2020). Pemanfaatan Machine Learning dalam Berbagai Bidang : Review paper. 5(April), 75–82.

Zaharchuk, G., Gong, E., Wintermark, M., Rubin, D., & Langlotz, C. P. (2018). Deep learning in neuroradiology. American Journal of Neuroradiology, 39(10), 1776–1784. https://doi.org/10.3174/ajnr.A5543

Zakiya, P. N., Novamizanti, L., Rizal, S., & Telkom, U. (2021). Klasifikasi Patologi Makula Retina Melalui Citra Oct Menggunakan Convolutional Neural Network Dengan ( Classification of Pathology of Macula Retina Through Oct Image Using. 8(5), 5072–5082

Published

2023-01-31

How to Cite

Noris, S., & Waluyo, A. (2023). Penerapan Deep Learning untuk Klasifikasi Buah Menggunakan Algoritma Convolutional Neural Network (CNN). Jurnal Teknologi Sistem Informasi Dan Aplikasi, 6(1), 39–46. Retrieved from https://openjournal.unpam.ac.id/index.php/JTSI/article/view/29648