Penerapan Logika Fuzzy Sugeno untuk Deteksi Tingkat Depresi Kerja Karyawan
Keywords:
Depression Level, Fuzzy Logic, Body Mass Index, Patient Health QuestionnaireAbstract
The problem of depression levels among employees in a company can have a negative impact on overall performance. Therefore, the company needs additional information as a tool to detect employees' depression levels early and gain an understanding of their level of depression. Researchers applied fuzzy Sugeno to build a model for detecting employees' depression levels based on their psychological data. A dataset including variables such as weight and height, which generate Body Mass Index (BMI) values, and scores from the Patient Health Questionnaire-9 (PHQ-9), was used as input for the model. The data was then transformed into fuzzy set concepts, and fuzzy rules were built based on existing domain knowledge. The model was constructed using 60 employee respondents who had completed the questionnaire. The study utilized the Matlab application, which provides accurate results. The research findings indicate that the fuzzy Sugeno logic model is capable of detecting employees' depression levels, with results showing (63.3%) of employees experiencing mild depression, followed by (31.7%) experiencing moderate depression, and a small percentage of employees experiencing severe depression (5%).References
Atina, A. (2019). Aplikasi Matlab pada Teknologi Pencitraan Medis. Jurnal Penelitian Fisika Dan Terapannya (JUPITER), 1(1), 28–34. https://doi.org/10.31851/jupiter.v1i1.3123
Gozali, M. I. (2020). Sistem Pengambil Keputusan Menggunakan Fuzzy Sugeno untuk Menentukan Penyakit Obesitas Anak Usia 0 sampai 16 Tahun. Jurnal Teknologi Dan Manajemen Informatika, 6(2), 90–96. https://doi.org/10.26905/jtmi.v6i2.4782
Hasanah, U., Fitri, N. L., Supardi, S., & PH, L. (2020). Depression Among College Students Due to the COVID-19 Pandemic. Jurnal Keperawatan Jiwa, 8(4), 421-424. https://doi.org/10.26714/jkj.8.4.2020.
Khairunisa, N. S., Safitri, D. R., Angelia, D., Taufan, M., & Sihaloho, E. D. (2019). Produktivitas Dan Depresi Di Indonesia: Analisis Data Indonesia Family Life Survey 014. Jurnal Ekonomi Pembangunan, 27(2), 75–84. https://doi.org/10.14203/jep.27.2.2019.75-84
Najamuddin, M., Miharja, D., & Adhkar, S. (2022). Implementasi Chatbot Deteksi Depresi Dini Pada Mahasiswa dengan PHQ-9 (Patient Health Questionnaire) menggunakan NLP (Natural Language Processing). Prosiding SAINTEK: Sains Dan Teknologi, 1(1), 103–108.
Pratiwi, T. K., & Astuti, Y. P. (2020). Penentuan Level Depresi Mahasiswa Tingkat Akhir Menggunakan Sistem Inferensi Fuzzy dengan Metode Sugeno. MATHunesa: Jurnal Ilmiah Matematika, 8(3), 269–273. https://doi.org/10.26740/mathunesa.v8n3.p269-273
Putri, A. D. (2017). Fuzzy Logic Untuk Menentukan Lokasi Kios Terbaik Di Kepri Mall Dengan Menggunakan Metode Sugeno. Edik Informatika, 3(1), 49–59. https://doi.org/10.22202/ei.2016.v3i1.1517
Rasyid, M. F. Z. (2021). Pengaruh Asupan Kalsium Terhadap Indeks Masa Tubuh (IMT). Jurnal Medika Hutama, 2(4), 1094–1097.
Rostampour, N., Naderi, M., Rostampour, N., & Safavi, P. (2022). The relationship between body mass index and depression, anxiety, body image, and eating attitudes in adolescents in Iran. Advanced Biomedical Research, 11(1), 51–55. https://doi.org/10.4103/abr.abr_259_20
Septiani, D., Enri, U., & Sulistiyowati, N. (2021). Diagnosa Tingkat Depresi Mahasiswa Selama Masa Pandemi Covid-19 Menggunakan Algoritma Random Forest. STRING (Satuan Tulisan Riset Dan Inovasi Teknologi), 6(2), 149–157. https://doi.org/10.30998/string.v6i2.10361
Sriani, S. (2019). Pemanfaatan Sistem Pengendali Water Level Control Untuk Budidaya Ikan Gurame Pada Kolam Terpal Menggunakan Logika Fuzzy Berbasis Mikrokontroler. Elkawnie, 5(1), 47–57. https://doi.org/10.22373/ekw.v5i1.3766
Sugihartono, P. P. P., Hidayat, N., & Tibyani, T. (2020). Implementasi Metode Fuzzy Tsukamoto Untuk Deteksi Dini Tingkat Depresi Mahasiswa Yang Sedang Menempuh Skripsi (Studi Kasus: Fakultas Ilmu Komputer Universitas Brawijaya). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 4(10), 3432–3438.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Muhammad Daffa, Sriani Sriani
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Teknologi Sistem Informasi dan Aplikasi have CC BY-NC or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work.
In developing strategy and setting priorities, Jurnal Teknologi Sistem Informasi dan Aplikasi recognize that free access is better than priced access, libre access is better than free access, and libre under CC BY-NC or the equivalent is better than libre under more restrictive open licenses. We should achieve what we can when we can. We should not delay achieving free in order to achieve libre, and we should not stop with free when we can achieve libre.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License
YOU ARE FREE TO:
- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms