Klasifikasi Data Sasaran Imunisasi Bayi dan Baduta pada Puskesmas Berbasis Web Metode Clustering Algoritma K-Means

Authors

  • Muhammad Naufal Tiyar Universitas Islam Negeri Sumatera Utara
  • Samsudin Samsudin Universitas Islam Negeri Sumatera Utara

DOI:

https://doi.org/10.32493/jtsi.v7i1.37321

Keywords:

K-Means, Klasifikasi data, Puskesmas, IDL, Clustering

Abstract

In order to obtain the target of Complete Basic Immunization (IDL), puskesmas (public health centers) in the sub-district of Duren Palm need to improve immunization services and data collection for infants and baduta (two-year-old babies). However, in the process of collecting data and grouping immunization data on infants and under-fives there are obstacles, because the data is too much to process so it takes a long time in grouping which puskesmas have reached the IDL target and which have not reached the IDL target, this makes the process ineffective and efficient. Seven Puskesmas in Duren Sawit sub-district will be divided into three groups, consisting of Puskesmas with high, medium, and low immunization targets. K-means clustering is the method used in this research, k-means clustering is a distance-based clustering algorithm, exclusively works on numeric attributes and divides data into several groups. The final results obtained using this method are in the final results of Clustering immunization targets in infants, there are three puskesmas that get a high predicate and four puskesmas that get a medium predicate. In the final results of Clustering immunization targets in under-fives, there are six health centers with high predicates and only one health center with moderate predicates. With the information system classification of infant and under-five immunization target data at Web-based health centers, it can simplify and speed up data processing and data grouping so that it becomes effective and efficient.

References

Ali, A. (2019). Klasterisasi Data Rekam Medis Pasien Menggunakan Metode K-Means Clustering Di Rumah Sakit Anwar Medika Balong Bendo Sidoarjo. Jurnal MATRIK, 19(1), 186–195. https://doi.org/10.30812/matrik.v19i1.529

Anggarwati, D., Nurdiawan, O., Ali, I., & Kurnia, D. A. (2021). Penerapan Algoritma K-Means Dalam Prediksi Penjualan Karoseri. Jurnal Data Science & Informatika (Jdsi), 1(2), 58–62.

Chusyairi, A., & Saputra, P. R. N. (2019). Pengelompokan Data Puskesmas Banyuwangi Dalam Pemberian Imunisasi Menggunakan Metode K-Means Clustering. Telematika, 12(2), 139–148. https://doi.org/10.35671/telematika.v12i2.848

Darmi, Y., & Setiawan, A. (2016). Penerapan Metode Clustering K-Means Dalam Pengelompokan Penjualan Produk. Jurnal Media Infotama, 12(2), 148–157.

Hidayah, N., Sihotang, H. M., & Lestari, W. (2018). Faktor Yang Berhubungan Dengan Pemberian Imunisasi Dasar Lengkap Pada Bayi Tahun 2017. Jurnal Endurance, 3(1), 153. https://doi.org/10.22216/jen.v3i1.2820

Irawan, M. D., & Siregar, H. F. (2020). Sistem Monitoring Pengajuan Skripsi Dengan Tambahan Hasil Cek Similarity. Prosiding Seminar Nasional Multidisiplin Ilmu Universitas Asahan Ke-4 Tahun 2020 Tema : ”Sinergi Hasil Penelitian Dalam Menghasilkan Inovasi Di Era Revolusi 4.0”, 1323–1329.

Khotimah, I. K., Sumarlin, T., & Rakasiwi, S. (2022). Sistem Pencatatan Keuangan Sekolah Berbasis Vb . Net ( Studi Kasus : Mts Nu Ungaran Kabupaten Semarang ). Jurnal Akuntansi Dan Bisnis (Akuntansi), 2(1), 1–8. http://journal.politeknik-pratama.ac.id/index.php/JIAB

Nurhikmah, T. S., Patimah, M., & N, R. (2021). Penyuluhan Tentang Pentingnya Imunisasi Dasar Lengkap Di Wilayah Kerja Puskesmas Cihideung Kota Tasikmalaya. Jurnal Abdimas PHB, 4(1), 30–34.

Prakoso, B. H., Rachmawati, E., Mudiono, D. R. P., Vestine, V., & Suyoso, G. E. J. (2023). Klasterisasi Puskesmas dengan K-Means Berdasarkan Data Kualitas Kesehatan Keluarga dan Gizi Masyarakat. Jurnal Buana Informatika, 14(1), 60–68.

Purnasari, M., Hartiwi, Y., & Nurhayati. (2022). Perancangan Sistem Informasi Pengelolaan Dana Masjid Berbasis Web Menggunakan Unified Modeling Language (UML) Manja. Media Online, 2(6), 258–264.

Putra, D. W. T., & Andriani, R. (2019). Unified Modelling Language ( UML ) dalam Perancangan Sistem Informasi Permohonan Pembayaran Restitusi SPPD. TEKNOIF, 7(1), 32–39.

Samsudin, & Mega, P. A. A. (2023). Rancang Bangun Sistem Informasi Manajemen Aset Pada BPJS Ketenagakerjaan Tanjung Morawa. JUTISI, 12(2), 1–8.

Saputra, P. R. N., & Chusyairi, A. (2021). Perbandingan Metode Clustering dalam Pengelompokan Data Puskesmas Pada Cakupan Imunisasi Dasar Lengkap. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 1(10), 5–12.

Suendri. (2018). Implementasi Diagram UML (Unified Modelling Language) Pada Perancangan Sistem Informasi Remunerasi Dosen Dengan Database Oracle (Studi Kasus: UIN Sumatera Utara Medan). Jurnal Ilmu Komputer Dan Informatika, 3(1), 1–9.

Sulistiyawati, A., & Supriyanto, E. (2020). Implementasi Algoritma K-means Clustring dalam Penetuan Siswa Kelas Unggulan. Jurnal TEKNO KOMPAK, 15(2), 25–36.

Suprawoto, T. (2016). Klasifikasi Data Mahasiswa Menggunakan Metode K-Means Untuk Menunjang Pemilihan Strategi Pemasaran. JIKO (Jurnal Informatika Dan Komputer), 1(1), 12–18. https://doi.org/10.26798/jiko.2016.v1i1.9

Published

2024-01-30

How to Cite

Tiyar, M. N., & Samsudin, S. (2024). Klasifikasi Data Sasaran Imunisasi Bayi dan Baduta pada Puskesmas Berbasis Web Metode Clustering Algoritma K-Means. Jurnal Teknologi Sistem Informasi Dan Aplikasi, 7(1), 143–154. https://doi.org/10.32493/jtsi.v7i1.37321