Penerapan Data Mining pada Penentuan Varian Rasa yang Paling Diminati di Roti Kacang Hj Eliya di Tebing Tinggi Menggunakan Algoritma K-Nears Neighbor

Authors

  • Wirna Rizka Auliani Universitas Islam Negeri Sumatera Utara
  • Abdul Halim Hasugian Universitas Islam Negeri Sumatera Utara

DOI:

https://doi.org/10.32493/jtsi.v7i1.38113

Keywords:

Data Mining; Variance; Nut Bread; K-Neiars Neighbour

Abstract

Growth and development in the business world is growing rapidly as it is now requiring entrepreneurs to be able to compete more fiercely for consumers' attention. Entrepreneurs must use various methods to attract consumeir inteireist about a product with various busineisseis that arei starting to eimeirgei. Theireiforei, eiveiry eintreipreineiur is reiquireid to havei thei ability to do someithing that is consideireid beitteir than compeititors' busineisseis in ordeir to facei this compeitition. Umeiga Nut Breiad Hj. Eiliya Lubis in promoting heir peianut breiad products. Thei compeititivei einvironmeint that eixists in thei eira of globalization will increiasingly leiad to eiconomic systeims and markeit meichanisms that position markeiteirs to always balancei and gain markeit sharei (markeit sharei). Thei KNN algorithm has seiveiral advantageis, nameily reisilieincei to training data that has a lot of noisei and is eiffeictivei whein thei training data is largei. Meianwhilei, thei weiakneiss of KNN is that KNN neieids to deiteirminei thei valuei of thei K parameiteir (thei numbeir of neiareist neiighbors), training baseid on distancei is not cleiar about what typei of distancei should bei useid and which attributeis should bei useid to geit thei beist reisults, and thei computational cost is quitei high beicausei it reiquireis calculations. distancei from eiach queiry instancei to thei eintirei training samplei. Thei reisult of this reiseiarch is a classification to deiteirminei scholarship reicipieints using thei k-neiiareiist neiighbor reiseiarch meithodology to obtain thei beist accuracy reisults of 100% from a total of 46 training data, 15 teisting data and a K valuei of 1. Of thei 10 flavors of Hj Eiiliya Teiibing Tinggi Peianut Breiad , it was found that thei beist flavor variants baseid on saleis weirei thei flavor variants that had GOOD characteiristics, nameily thei chocolatei, chocolatei cheieisei, greiein beian and black/meiirah flavor variants.

References

Aigustinai, G. R., Ai. T. Susilaini, aind Supaitmain. 2018. “Evailuaisi Sistem Informaisi Mainaijemen Paidai Baigiain Pendaiftairain Raiwait Jailain Dengain Metode Hot-Fit.” In Prosiding Seminair Naisionail Multimediai & Airtificiail Intelligence 2018,.

Aiisyaih, N., aind Ai. S. Putrai. 2022. “Sistem Pendukung Keputusain Rekomendaisi Pemilihain Mainaijer Terbaiik Menggunaikain Metode Aihp (Ainailytic Hierairchy Process).” Jurnail Esensi Infokom : Jurnail Esensi Sistem Informaisi Dain Sistem Komputer 5(2): 7–13.

Aiugusto, J. Y. 2019. “Perbaindingain Metode Topsis Dain Simple Aidditive Weighting Untuk Rekomendaisi Penentu Penerimai Beaisiswai Smai Dy.” Jurnail Ilmu Komputer Dain Sistem Informaisi 3(1): 73–78.

Dewi, Sintai et ail. 2022. “Pengendailiain Persediaiain Maiteriail Menggunaikain Metode Continuous Review Dengain Sistem (r, Q).” Juminten 3(2): 1–12.

Furqon, M., aind L.S Sriaiini., Haiiraiihaiip. 2020. “Klaiisifikaiisi Duaiin Bugencil Menggunaiikaiin Graiiy Level Co-Occurrence Maiitrix Daiin K-Neaiirest Neighbor.” Jurnaiil CoreIT 6(1): 22–29.

Hidaiyait, Rizki, aind Ucuk Dairussailaim. 2022. “Perbaindingain Metode Saiw Dain Aihp Paidai Sistem Pendukung Keputusain Web Baised Seleksi Kairyaiwain Terbaiik.” JIPI (Jurnail Ilmiaih Penelitiain dain Pembelaijairain Informaitikai) 7(1): 209–23.

Kusrini. 2019. “Konsep Dain Aiplikaisi Sistem Pendukung Keputusain.” Jurnail Ilmu Komputer.

Kusumaintairai, Prisai Mairgai, Muhaimmaid Ilfaidz Ailfiain, aind Yolaindai Yodistinai. 2019. “Ainailisis Metode Aihp Dain Saiw Paidai Pendukung Keputusain Seleksi Ketuai Depairtemen Himpunain Maihaisiswai.” Jurnail Sistem Informaisi dain Bisnis Cerdais 12(1): 16–22.

Lu, Ying Jin, aind Jun He. 2017. “Dempster-Shaifer Evidence Theory aind Study of Some Key Problems.” Journail of Electronic Science aind Technology 15(1): 106–12.

Morgain, I. 2019. Aiipplying Caiise-Baiised Reaiisoning. Cailiforniai: Morgaiin Kaiiufmaiinn Publishers,Inc, Saiin Fraiincisco.

Paiil, S., K., aind K Shiu, S., C. 2018. “Foundaiitions of Soft Caiise-Baiised Reaiisoning.” Journail of Daitai Mining.

Sugiyono. 2016. Metode Penelitiain Kuaintitaitif, Kuailitaitif Dain R&D. Baindung: PT Ailfaibetai.

Utaimai, D.N. 2017. Sistem Pendukung Keputusain : Filosofi, Toeri Dain IMpelentaisi. Jaikairtai: Gairudhaiwaicai.

Wiley, R.C., S. Ventur, G. Espejo, P., aind C. Hervaiis. 2019. “Daiitaii Mining Aiilgorithms to Claiissify Students, Cordobaii University.” Journail of Daitai Mining.

Wu, X., aind V. Kumaiir. 2019. “The Top Ten Aiilgoritms in Daiitaii Mining.” Taiiylor &Fraiincis Group, LLC Chaiipmaiin & Haiill/CRC.

Published

2024-01-30

How to Cite

Auliani, W. R., & Hasugian, A. H. (2024). Penerapan Data Mining pada Penentuan Varian Rasa yang Paling Diminati di Roti Kacang Hj Eliya di Tebing Tinggi Menggunakan Algoritma K-Nears Neighbor. Jurnal Teknologi Sistem Informasi Dan Aplikasi, 7(1), 125–130. https://doi.org/10.32493/jtsi.v7i1.38113