Prediksi Kerentanan Kekeringan Perkotaan Menggunakan Machine Learning: Pendekatan untuk Perencanaan Kota Tangguh di Kota Kupang

Authors

  • Eglantyne Lidya Subnafeu Program Studi Perencanaan Wilayah dan Kota, ITN Malang
  • Mohammad Reza Program Studi Perencanaan Wilayah dan Kota, Institut Teknologi Nasional Malang
  • Ardiyanto Maksimilianus Gai Program Studi Perencanaan Wilayah dan Kota, Institut Teknologi Nasional Malang
  • Firman Afrianto Ikatan Ahli Perencanaan Jawa Timur https://orcid.org/0000-0002-9369-8713

DOI:

https://doi.org/10.32493/jtsi.v8i2.43780

Keywords:

NDDI, Kerentanan Kekeringan, Machine Learning, Kota Tangguh

Abstract

The city of Kupang in East Nusa Tenggara faces increasingly serious drought challenges due to climate change and rapid urbanization, prompting the need for this study to predict drought vulnerability in the region. This study aims to develop a drought vulnerability prediction model using a machine learning approach that combines Normalized Difference Drought Index (NDDI) data, built-up areas, and population data in the last five (5) years. The methods used include NDDI calculations from satellite imagery, a zonal statistical analysis, and drought vulnerability simulations using models such as Random Forest, Support Vector Machine, and Artificial Neural Network. The results show that the Random Forest model provides the best prediction with the highest R Squared value, and indicates an increased risk of drought in several villages in 2030 and 2040, especially in areas with rapid population growth and expansion of built-up areas. The conclusion of this study confirms that the developed approach is able to provide a more accurate picture of drought-prone areas, so that it can be an important guide in more resilient and sustainable urban  planning, and recommends strengthening water management and spatial planning policies with early intervention in the most vulnerable areas.

References

Dayal, K. D. (2023). Drought modelling based on artificial intelligence and neural network algorithms: A case study in Queensland, Australia. Science of the Total Environment, 867, 161234. https://doi.org/10.1007/978-3-319-50094-2_11

Dikshit, A. P. (2021). Artificial neural networks in drought prediction in the 21st century: A scientometric analysis. Applied Soft Computing, 114, 108080. https://doi.org/10.1016/j.asoc.2021.108080

Gu, Y., Brown, J., Verdin, J., & Wardlow, B. (2007). A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophysical Research Letters, 34(6), 1-9 https://doi.org/10.1007/978-3-319-50094-2_11

Haag, S., Tarboton, D., Smith, M., & Shokoufandeh, A. (2020). Fast summarizing algorithm for polygonal statistics over a regular grid. Computers & Geosciences, 142, 12–29. https://doi.org/10.1016/j.cageo.2020.104524

Hao, Z. H. (2017). An integrated package for drought monitoring, prediction and analysis to aid drought modeling and assessment. Environmental Modelling & Software, 91, 199–209. https://doi.org/10.1016/j.envsoft.2017.02.008

Khan, N. S. (2020). Prediction of droughts over Pakistan using machine learning algorithms. Advances in Water Resources, 139. https://doi.org/10.1016/j.advwatres.2020.103562

Koroh, D.-J., Hidayati, N., & Widodo, W. (2017). Perumusan zonasi bencana kekeringan di Kabupaten Kupang. Malang: Institut Teknologi Nasional Malang, 12

Krishna, P. S., Krishna, B. Y., Nafisa, S., Sravani, T. R., Madhuri, J. R., & Vanditha, C. (2023). Prediction of droughts using SPEI. In Proceedings of the 2023 IEEE 12th International Conference on Communication Systems and Network Technologies (CSNT) 839–845, Bhopal: IEEE. https://doi.org/10.1109/CSNT57126.2023.10134742

Krisnayanti, D., Bunganaen, W., Frans, J., Seran, Y., & Legono, D. (2021). Curve number estimation for ungauged watershed in semi-arid region. Civil Engineering Journal, 845–850 https://doi.org/10.28991/cej-2021-03091711

Machairas, A., & Van den Ven, F. (2023). An urban drought categorization framework and the vulnerability of a lowland city to groundwater urban droughts. Natural Hazards, 117(3), 1341–1360. https://doi.org/10.21203/rs.3.rs-1763939/v1

Marelle, L., Myhre, G., Steensen, B., Hodnebrog, O., Alterskjær, K., & Sillmann, J. (2020). Urbanization in megacities increases the frequency of extreme precipitation events far more than their intensity. Environmental Research Letters, 15(7), 74–76. https://doi.org/10.1088/1748-9326/abcc8f

Mistry, P., & Suryanarayana, T. (2023). Assessment and monitoring of agricultural drought indices using remote sensing techniques and their inter-comparison. Ecological Perspective, 2(1), 2–6. https://doi.org/10.53463/ecopers.20230171

Orimoloye, I. R., Ololade, O. O., Mazinyo, S. P., Kalumba, A. M., Ekundayo, O. Y., Busayo, E. T., & Nel, W. (2019). Spatial assessment of drought severity in Cape Town area, South Africa. Heliyon, 5(7), 4–5. https://doi.org/10.1016/j.heliyon.2019.e02148

Park, H. K. (2019). Prediction of severe drought area based on Random Forest: Using satellite image and topography data. Water, 11(4), 2–3. https://doi.org/10.3390/w11040705

Rahman, F., Sukmono, A., & Yuwono, B. (2017). Analisis kekeringan pada lahan pertanian menggunakan metode NDDI dan Perka BNPB Nomor 02 Tahun 2012 (Studi Kasus: Kabupaten Kendal Tahun 2015). Jurnal Geodesi Undip, 6(1), 5–6.

Renza, D., Martinez, E., Arquero, A., & Sanchez, J. (2010). Drought estimation maps by means of multidate Landsat fused images. Remote Sensing for Science, Education and Natural and Cultural Heritage, 775–782. https://www.earsel.org/symposia/2010-symposium-Paris/Proceedings/EARSeL-Symposium-2010_17-03.pdf

Sena, A., & Ebi, K. (2020). When land is under pressure, health is under stress. International Journal of Environmental Research and Public Health, 17(15), 2–5. https://doi.org/10.3390/ijerph17155428

Singla, S., & Eldawy, A. (2020). Raptor zonal statistics: Fully distributed zonal statistics of big raster + vector data. In IEEE International Conference on Big Data (Big Data) (pp. 571–580). IEEE. https://doi.org/10.1109/BigData50022.2020.9377907

Smirnov, O., Zhang, M., Tan, X., Orbell, J., Lin, A., & Gao, J. (2016). The relative importance of climate change and population growth for exposure to future extreme droughts. Climatic Change, 134(1), 41–53. https://doi.org/10.1007/s10584-016-1716-z

Sundararajan, K., Garg, L., Srinivasan, K., Anbalagan, B., Kaliappan, J., Ganapathy, G., & Meena, T. (2021). A contemporary review on drought modeling using machine learning approaches. Computer Modeling in Engineering & Sciences, 127(2), 513–536. https://doi.org/10.32604/cmes.2021.015531

Verbeke, W., Dejaeger, K., Martens, D., Hur, J., & Baesens, B. (2012). New insights into churn prediction in the telecommunication sector: A profit-driven data mining approach. European Journal of Operational Research, 218(1), 211–229. https://doi.org/10.1016/j.ejor.2011.09.031

Witten, I. H., Frank, E., & Hall, M. A. (2011). Data mining: Practical machine learning tools and techniques (3rd ed.). Burlington, MA: Morgan Kaufmann, 607–629.

https://doi.org/10.1016/C2009-0-19715-5

Wu, J., & Chen, Y. (2017). Research of using RF model to drought forecast on Huaihe River. IOP Conference Series: Earth and Environmental Science, 82(1), 1–3. https://doi.org/10.1088/1755-1315/82/1/012016

Yap, B. W., Rani, K. A., Rahman, H. A., Fong, S., Khairudin, Z., & Abdullah, N. N. (2014). An application of oversampling, undersampling, bagging and boosting in handling imbalanced datasets. In Proceedings of the First International Conference on Advanced Data and Information Engineering (DaEng-2013) (Vol. 285, pp. 13–22). Singapore: Springer. https://doi.org/10.1007/978-981-4585-18-7_2

Zha, H., Miao, Y., Wang, T., Li, Y., Zhang, J., Sun, W., & Kusnierek, K. (2020). Improving unmanned aerial vehicle remote sensing-based rice nitrogen nutrition index prediction with machine learning. Remote Sensing, 12(2), 215. https://doi.org/10.3390/rs12020215

Zia, S., Minallah, M. U., Tahir, M., & Hanif, A. (2022). Impact assessment of urban built-up area on groundwater level of district Faisalabad, Pakistan. International Journal of Economic and Environmental Geology, 13(1), 33–36. https://doi.org/10.46660/ijeeg.v12i4.71

Published

2025-04-30

How to Cite

Subnafeu, E. L., Reza, M., Gai, A. M., & Afrianto, F. (2025). Prediksi Kerentanan Kekeringan Perkotaan Menggunakan Machine Learning: Pendekatan untuk Perencanaan Kota Tangguh di Kota Kupang. Jurnal Teknologi Sistem Informasi Dan Aplikasi, 8(2), 69–82. https://doi.org/10.32493/jtsi.v8i2.43780