Analysis of Public Opinion on Disability Services Using Sentiment Analysis and Latent Dirichlet Allocation Topic Modeling Methods
DOI:
https://doi.org/10.32493/jtsi.v8i3.48406Keywords:
Disability, IndoRoBERTa, Public Policy, Topic Modelling, TwitterAbstract
In 2023, the number of people with disabilities in Indonesia reached 8.5% of the total population. Despite this significant proportion, they continue to face barriers in accessing public services, education, healthcare, and employment. Therefore, there is an urgent need for public policy analysis supported by real-time insights into public perceptions. This study aims to analyze online data from Twitter to inform policy recommendations for enchancing disability services. IndoRoBERTa fine-tuning was applied to capture nuanced emotional polarity in Indonesian-language texts, while Latent Dirichlet Allocation (LDA) topic modeling was employed to identify the latent themes behind these opinions. The two methods were deliberately combined because sentiment analysis alone cannot uncover the substantive issues underlying public views, while topic modeling alone cannot show the polarity of those views together; they provide a more comprehensive analytical framework. The novelty of this research lies in integrating advanced sentiment analysis and topic modeling to support the formulation of disability policy in the Indonesian context, which remains underexplored. A total of 18,242 tweets were collected using four keywords: disability, disability services, disability facilities, and disability programs. The analysis revealed critical issues, including physical accessibility, bullying prevention, and educational programs to reduce early marriage. The proposed model achieved strong performance with 97.42% accuracy, and precision, recall, and F1-scores all exceeded 95%, surpassing previous studies with an accuracy of around 93%. These findings demonstrate that data mining of online public opinion can serve as a robust medium for formulating responsive public policies and enabling real-time monitoring of disability-related services.
References
Adrinta, Abdurrazzaq Muhammad Lesmana, T., & Edwin. (2022). Analisis Sentimen KUHP Baru Pada Data Twitter Menggunakan BERT. Jurnal Komunikasi, Sains Dan Teknologi, 1(2), 83–88.
Akhmad, E. P. A. (2023). Analisis Sentimen Ulasan Aplikasi DLU Ferry Pada Google Play Store Menggunakan Bidirectional Encoder Representations from Transformers. Jurnal Aplikasi Pelayaran Dan Kepelabuhanan, 13(2), 104–112.
Anshori Daulatul Islam, Ferry Timorochmadi, M.Y.Fakhrudin, Ricky Yoseptry, & Neni Sri Rahayu. (2024). Pemenuhan Kebutuhan Pendidikan bagi Penyandang Disabilitas di Kota Bandung. Jurnal Pendidikan Dan Kewirausahaan, 12(1), 362–377.
Bogdanowicz, A., & Guan, C. H. (2022). Dynamic Topic Modeling of Twitter Data During The COVID-19 Pandemic. PLoS ONE, 17(5 May), 1–22.
Fadli, M., & Saputra, R. A. (2023). Klasifikasi Dan Evaluasi Performa Model Random Forest Untuk Prediksi Stroke. JT: Jurnal Teknik, 12(2), 72–80. http://jurnal.umt.ac.id/index.php/jt/index
Hidayah, U., Yuwanto, & Erowati, D. (2024). Peran Pemerintah Kota Semarang dalam Pemberdayaan Penyandang Disabilitas. Journal of Politic and Government Studies, 13(2), 676–692.
Husin, N. (2023). Komparasi Algoritma Random Forest, Naïve Bayes, dan Bert Untuk Multi-Class Classification Pada Artikel Cable News Network (CNN). Jurnal Esensi Infokom : Jurnal Esensi Sistem Informasi Dan Sistem Komputer, 7(1), 75–84. https://doi.org/10.55886/infokom.v7i1.608
Jahin, M. A., Shovon, M. S. H., & Mridha, M. F. (2024). TRABSA: Interpretable Sentiment Analysis of Tweets Using Attention-based BiLSTM and Twitter-RoBERTa. 1–25.
Julaeha, S., Asmiati, N., & Febri Abadi, R. (2022). Peranan Organisasi Masyarakat Terhadap Kesejahteraan Disabilitas di Lingkungan Kota Serang. Jurnal Educatio FKIP UNMA, 8(4), 1403–1410.
Lahesti, E., Akhyary, E., & Hendrayady, A. (2023). Implementasi Kebijakan Pendidikan Inklusif : Studi Kasus SMP Negeri 15 Tanjungpinang. Eksekusi: Jurnal Ilmu Hukum Dan Administrasi Negara, 1(3), 250–262.
Nabiilah, G. Z., Prasetyo, S. Y., Izdihar, Z. N., & Girsang, A. S. (2022). BERT Base Model for Toxic Comment Analysis on Indonesian Social Media. Procedia Computer Science, 216(July), 714–721.
Negara, E. S., & Triadi, D. (2022). Topic Modeling Using Latent Dirichlet Allocation (LDA) on Twitter Data with Indonesia Keyword. Bulletin of Social Informatics Theory and Application, 5(2), 124–132.
Novialdi, R., Isvarwani, I., Fauzi, F., Ismail, I., & Qadafi, M. (2021). Menyoal Kesenjangan dan Diskriminisi Publik Terhadap Penyandang Disabilitas. Journal of Governance and Social Policy, 2(2), 169–178. https://doi.org/10.24815/gaspol.v2i2.23258
Pandur, M. B., & Dobša, J. (2020). Topic Modelling in Social Sciences: Case Study of Web of Science. Central European Conference on Information and Intelligent Systems, October, 211–218. http://archive.ceciis.foi.hr/app/public/conferences/2020/Proceedings/IIS/IIS2.pdf
Pramashela, F. S., & Rachim, H. A. (2022). Aksesibilitas Pelayanan Publik Bagi Penyandang Disabilitas Di Indonesia. Focus : Jurnal Pekerjaan Sosial, 4(2), 225. https://doi.org/10.24198/focus.v4i2.33529
Putri, N. A., & Ardiansyah. (2023). Analisis Sentimen Terhadap Kemajuan Kecerdasan Buatan di Indonesia. Jurnal Sains Dan Informatika, 9(November), 136–145. https://doi.org/10.34128/jsi.v9i2.649
Rahadian, W. S., Ramdani, E. M., & Mursalim, S. W. (2021). Partisipasi Masyarakat Dalam Peningkatan Aksesibilitas Penyandang Disabilitas Menggunakan Metode Co-Production di UPT Puskesmas Salam. Konferensi Nasional Ilmu Administrasi, 76–81.
Royani, N., Widodo, C. E., & Warsito, B. (2024). Topic Modelling Latent Dirichlet Allocation untuk Klasifikasi Komentar pada Layanan Streaming Platform. JST (Jurnal Sains Dan Teknologi), 12(3), 815–822.
Uthirapathy, S. E., & Sandanam, D. (2022). Topic Modelling and Opinion Analysis on Climate Change Twitter Data Using LDA and BERT Model. Procedia Computer Science, 218(2022), 908–917.
Vidya Chandradev, I Made Agus Dwi Suarjaya, & I Putu Agung Bayupati. (2023). Analisis Sentimen Review Hotel Menggunakan Metode Deep Learning BERT. Jurnal Buana Informatika, 14(02), 107–116.
Zalutska, O., Molchanova, M., Sobko, O., Mazurets, O., Pasichnyk, O., Barmak, O., & Krak, I. (2023). Method for Sentiment Analysis of Ukrainian-Language Reviews in E-Commerce Using RoBERTa Neural Network. CEUR Workshop Proceedings, 3387, 344–356.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Zahid Anugrah Muzaffar Rana, Inggil Tahta Haritza, M. Arif Fadhillah, Dwi Adi Purnama

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Teknologi Sistem Informasi dan Aplikasi have CC BY-NC or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work.
In developing strategy and setting priorities, Jurnal Teknologi Sistem Informasi dan Aplikasi recognize that free access is better than priced access, libre access is better than free access, and libre under CC BY-NC or the equivalent is better than libre under more restrictive open licenses. We should achieve what we can when we can. We should not delay achieving free in order to achieve libre, and we should not stop with free when we can achieve libre.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License
YOU ARE FREE TO:
- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms








