Analysis of Public Opinion on Disability Services Using Sentiment Analysis and Latent Dirichlet Allocation Topic Modeling Methods

Authors

  • Zahid Anugrah Muzaffar Rana Universitas Islam Indonesia
  • Inggil Tahta Haritza Universitas Islam Indonesia
  • M. Arif Fadhillah Universitas Islam Indonesia
  • Dwi Adi Purnama Universitas Islam Indonesia

DOI:

https://doi.org/10.32493/jtsi.v8i3.48406

Keywords:

Disability, IndoRoBERTa, Public Policy, Topic Modelling, Twitter

Abstract

In 2023, the number of people with disabilities in Indonesia reached 8.5% of the total population. Despite this significant proportion, they continue to face barriers in accessing public services, education, healthcare, and employment. Therefore, there is an urgent need for public policy analysis supported by real-time insights into public perceptions. This study aims to analyze online data from Twitter to inform policy recommendations for enchancing disability services. IndoRoBERTa fine-tuning was applied to capture nuanced emotional polarity in Indonesian-language texts, while Latent Dirichlet Allocation (LDA) topic modeling was employed to identify the latent themes behind these opinions. The two methods were deliberately combined because sentiment analysis alone cannot uncover the substantive issues underlying public views, while topic modeling alone cannot show the polarity of those views together; they provide a more comprehensive analytical framework. The novelty of this research lies in integrating advanced sentiment analysis and topic modeling to support the formulation of disability policy in the Indonesian context, which remains underexplored. A total of 18,242 tweets were collected using four keywords: disability, disability services, disability facilities, and disability programs. The analysis revealed critical issues, including physical accessibility, bullying prevention, and educational programs to reduce early marriage. The proposed model achieved strong performance with 97.42% accuracy, and precision, recall, and F1-scores all exceeded 95%, surpassing previous studies with an accuracy of around 93%. These findings demonstrate that data mining of online public opinion can serve as a robust medium for formulating responsive public policies and enabling real-time monitoring of disability-related services.

References

Adrinta, Abdurrazzaq Muhammad Lesmana, T., & Edwin. (2022). Analisis Sentimen KUHP Baru Pada Data Twitter Menggunakan BERT. Jurnal Komunikasi, Sains Dan Teknologi, 1(2), 83–88.

Akhmad, E. P. A. (2023). Analisis Sentimen Ulasan Aplikasi DLU Ferry Pada Google Play Store Menggunakan Bidirectional Encoder Representations from Transformers. Jurnal Aplikasi Pelayaran Dan Kepelabuhanan, 13(2), 104–112.

Anshori Daulatul Islam, Ferry Timorochmadi, M.Y.Fakhrudin, Ricky Yoseptry, & Neni Sri Rahayu. (2024). Pemenuhan Kebutuhan Pendidikan bagi Penyandang Disabilitas di Kota Bandung. Jurnal Pendidikan Dan Kewirausahaan, 12(1), 362–377.

Bogdanowicz, A., & Guan, C. H. (2022). Dynamic Topic Modeling of Twitter Data During The COVID-19 Pandemic. PLoS ONE, 17(5 May), 1–22.

Fadli, M., & Saputra, R. A. (2023). Klasifikasi Dan Evaluasi Performa Model Random Forest Untuk Prediksi Stroke. JT: Jurnal Teknik, 12(2), 72–80. http://jurnal.umt.ac.id/index.php/jt/index

Hidayah, U., Yuwanto, & Erowati, D. (2024). Peran Pemerintah Kota Semarang dalam Pemberdayaan Penyandang Disabilitas. Journal of Politic and Government Studies, 13(2), 676–692.

Husin, N. (2023). Komparasi Algoritma Random Forest, Naïve Bayes, dan Bert Untuk Multi-Class Classification Pada Artikel Cable News Network (CNN). Jurnal Esensi Infokom : Jurnal Esensi Sistem Informasi Dan Sistem Komputer, 7(1), 75–84. https://doi.org/10.55886/infokom.v7i1.608

Jahin, M. A., Shovon, M. S. H., & Mridha, M. F. (2024). TRABSA: Interpretable Sentiment Analysis of Tweets Using Attention-based BiLSTM and Twitter-RoBERTa. 1–25.

Julaeha, S., Asmiati, N., & Febri Abadi, R. (2022). Peranan Organisasi Masyarakat Terhadap Kesejahteraan Disabilitas di Lingkungan Kota Serang. Jurnal Educatio FKIP UNMA, 8(4), 1403–1410.

Lahesti, E., Akhyary, E., & Hendrayady, A. (2023). Implementasi Kebijakan Pendidikan Inklusif : Studi Kasus SMP Negeri 15 Tanjungpinang. Eksekusi: Jurnal Ilmu Hukum Dan Administrasi Negara, 1(3), 250–262.

Nabiilah, G. Z., Prasetyo, S. Y., Izdihar, Z. N., & Girsang, A. S. (2022). BERT Base Model for Toxic Comment Analysis on Indonesian Social Media. Procedia Computer Science, 216(July), 714–721.

Negara, E. S., & Triadi, D. (2022). Topic Modeling Using Latent Dirichlet Allocation (LDA) on Twitter Data with Indonesia Keyword. Bulletin of Social Informatics Theory and Application, 5(2), 124–132.

Novialdi, R., Isvarwani, I., Fauzi, F., Ismail, I., & Qadafi, M. (2021). Menyoal Kesenjangan dan Diskriminisi Publik Terhadap Penyandang Disabilitas. Journal of Governance and Social Policy, 2(2), 169–178. https://doi.org/10.24815/gaspol.v2i2.23258

Pandur, M. B., & Dobša, J. (2020). Topic Modelling in Social Sciences: Case Study of Web of Science. Central European Conference on Information and Intelligent Systems, October, 211–218. http://archive.ceciis.foi.hr/app/public/conferences/2020/Proceedings/IIS/IIS2.pdf

Pramashela, F. S., & Rachim, H. A. (2022). Aksesibilitas Pelayanan Publik Bagi Penyandang Disabilitas Di Indonesia. Focus : Jurnal Pekerjaan Sosial, 4(2), 225. https://doi.org/10.24198/focus.v4i2.33529

Putri, N. A., & Ardiansyah. (2023). Analisis Sentimen Terhadap Kemajuan Kecerdasan Buatan di Indonesia. Jurnal Sains Dan Informatika, 9(November), 136–145. https://doi.org/10.34128/jsi.v9i2.649

Rahadian, W. S., Ramdani, E. M., & Mursalim, S. W. (2021). Partisipasi Masyarakat Dalam Peningkatan Aksesibilitas Penyandang Disabilitas Menggunakan Metode Co-Production di UPT Puskesmas Salam. Konferensi Nasional Ilmu Administrasi, 76–81.

Royani, N., Widodo, C. E., & Warsito, B. (2024). Topic Modelling Latent Dirichlet Allocation untuk Klasifikasi Komentar pada Layanan Streaming Platform. JST (Jurnal Sains Dan Teknologi), 12(3), 815–822.

Uthirapathy, S. E., & Sandanam, D. (2022). Topic Modelling and Opinion Analysis on Climate Change Twitter Data Using LDA and BERT Model. Procedia Computer Science, 218(2022), 908–917.

Vidya Chandradev, I Made Agus Dwi Suarjaya, & I Putu Agung Bayupati. (2023). Analisis Sentimen Review Hotel Menggunakan Metode Deep Learning BERT. Jurnal Buana Informatika, 14(02), 107–116.

Zalutska, O., Molchanova, M., Sobko, O., Mazurets, O., Pasichnyk, O., Barmak, O., & Krak, I. (2023). Method for Sentiment Analysis of Ukrainian-Language Reviews in E-Commerce Using RoBERTa Neural Network. CEUR Workshop Proceedings, 3387, 344–356.

Downloads

Published

2025-07-11

How to Cite

Rana, Z. A. M., Haritza, I. T., Fadhillah, M. A., & Purnama, D. A. (2025). Analysis of Public Opinion on Disability Services Using Sentiment Analysis and Latent Dirichlet Allocation Topic Modeling Methods. Jurnal Teknologi Sistem Informasi Dan Aplikasi, 8(3), 151–161. https://doi.org/10.32493/jtsi.v8i3.48406