Optimalisasi Kinerja Convolutional Neural Networks VGG16 dalam Identifikasi Bangunan Adat Melayu

Authors

  • Sri Winiarti Universitas Ahmad Dahlan
  • Sunardi Sunardi Universitas Ahmad Dahlan
  • Abdul Fadlil Universitas Ahmad Dahlan

DOI:

https://doi.org/10.32493/jtsi.v8i3.58210

Keywords:

Bangunan Adat Melayu; Convolutional Neural Network; Identifikasi; Optimalisasi; VGG16 Model.

Abstract

Penggunaan deep learning dalam mendeteksi berbagai objek sudah banyak diterapkan, namun untuk identifikasi kemiripan bangunan untuk gaya arsitektur masih terbatas. Analisis klasifikasi model desain arsitektur bangunan adat Melayu dapat dilakukan dengan menerapkan metode Convolusional Neural Network (CNN). Pendekatan yang digunakan untuk menganalisis klasifikasi dan kemiripan model bangunan adat melayu menggunakan model arsitektur VGG16. Ekstraksi fitur menggunakan model deep learning untuk mengidentifikasi jenis bangunan adat Melayu menggunakan parameter atap, jendela, dan ornamen bangunan. Dataset citra bangunan adat Melayu didapatkan dari pengambilan langsung ke lokasi bangunan adat melayu Riau di Kawasan Jalan Muhammad Arifin Pekanbaru Riau untuk training sebanyak 644 gambar dan testing model sebanyak 106 gambar. Model yang digunakan adalah VGG16. Parameter ukuran kinerja meliputi accuracy, precision, recall, dan F1-score. Akurasi yang didapatkan dalam penelitian ini adalah 98,77% dari total 106 data yang diuji, sedangkan precision 0,8678, recall 0,9633, dan F1-score 0,9877. Hasil yang didapatkan ini melalui setting parameter learning rate 0,0001, drop out 0,20, dan epoch sebesar 25. Secara keseluruhan model VGG16 yang digunakan dalam penelitian ini menghasilkan akurasi yang baik.

References

Abed, M. H., & Hussain, Z. M. (2021). Architectural heritage images classification using deep learning with CNN Architectural Heritage Images Classification Using Deep Learning With CNN. Proceedings of the 2nd International Workshop on Visual Pattern Extraction and Recognition for Cultural Heritage Understanding, 1.

Ahdiani, U., Winiarti, S., Pramono, H., & Ismail, T. (2025). Collaboration of Digital Literacy and Artificial Intelligence in Preserving Traditional Malay House Culture. E3S Web of Conferences, 622, 1–8. https://doi.org/10.1051/e3sconf/202562203008

Alsheikh Mahmoud, S., & Bin Hashim, H. (2025). Traditional Malay House Preservation: Guidelines for Structural Evaluation. Buildings, 15(5). https://doi.org/10.3390/buildings15050782

Bashaddadh, O., Omar, N., Mohd, M., & Khalid, M. N. A. (2025). Machine Learning and Deep Learning Approaches for Fake News Detection: A Systematic Review of Techniques, Challenges, and Advancements. IEEE Access, 13(May), 90433–90466. https://doi.org/10.1109/ACCESS.2025.3572051

Devi Yunita, & Maulana Fansyuri. (2025). Analisis Kinerja Algoritma Logistic Regression Dalam Klasifikasi Citra Wajah Berdasarkan Fitur Citra Warna Dan Bentuk. Jurnal Teknik Mesin, Elektro Dan Ilmu Komputer, 5(2), 48–56. https://doi.org/10.55606/teknik.v5i2.7200

Fawwaz, I., Yennimar, Y., Dharsinni, N. P., & Wijaya, B. A. (2023). The Optimization of CNN Algorithm Using Transfer Learning for Marine Fauna Classification. Sinkron, 8(4), 2236–2245. https://doi.org/10.33395/sinkron.v8i4.12893

Fu, D. S., Huang, J., Hazra, D., Dwivedi, A. K., Gupta, S. K., Shivahare, B. D., & Garg, D. (2024). Enhancing sports image data classification in federated learning through genetic algorithm-based optimization of base architecture. In PLoS ONE (Vol. 19, Issue 7 July). https://doi.org/10.1371/journal.pone.0303462

Janković, R. (2020). Machine learning models for cultural heritage image classification: Comparison based on attribute selection. Information (Switzerland), 11(1). https://doi.org/10.3390/info11010012

Jiang, Z. P., Liu, Y. Y., Shao, Z. E., & Huang, K. W. (2021). An improved VGG16 model for pneumonia image classification. Applied Sciences (Switzerland), 11(23). https://doi.org/10.3390/app112311185

Kevseroglu, O., & Kurban, R. (2024). Re-exploring the Kayseri Culture Route by Using Deep Learning for Cultural Heritage Image Classification Cultural Heritage Image Classification by Using Deep Learning: Kayseri Culture Route. ACM International Conference Proceeding Series, 196–201. https://doi.org/10.1145/3660853.3660913

Li, H., & Dong, H. (2025). Architectural Style Classification Based on Deep Learning. Computer-Aided Design and Applications, 22, 16–31. https://doi.org/10.14733/cadaps.2025.S1.16-31

Li, S., Wu, C., & Xiong, N. (2022). Hybrid Architecture Based on CNN and Transformer for Strip Steel Surface Defect Classification. Electronics (Switzerland), 11(8), 1–14. https://doi.org/10.3390/electronics11081200

Lydia, A. A., & Chandrasekar, S. (2022). A Comparative Study on Regularization Techniques in Convolutional Neural Networks. International Journal of Research in Engineering and Science (IJRES) ISSN, 10(7), 784–793.

Malhotra, R., & Singh, P. (2023). Recent advances in deep learning models: a systematic literature review. In Multimedia Tools and Applications (Vol. 82, Issue 29). Springer US. https://doi.org/10.1007/s11042-023-15295-z

Mall, P. K., Singh, P. K., Srivastav, S., Narayan, V., Paprzycki, M., Jaworska, T., & Ganzha, M. (2023). A comprehensive review of deep neural networks for medical image processing: Recent developments and future opportunities. Healthcare Analytics, 4(June), 100216. https://doi.org/10.1016/j.health.2023.100216

Maulidi, M. R., Indriani, F., Farmadi, A., Budiman, I., & Kartini, D. (2024). Optimizing South Kalimantan Food Image Classification Through CNN Fine-Tuning. Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika (JITEKI), 10(4), 897–913. https://doi.org/10.26555/jiteki.v10i4.30325

Mustafid, A., Pamuji, M. M., & Helmiyah, S. (2020). A Comparative Study of Transfer Learning and Fine-Tuning Method on Deep Learning Models for Wayang Dataset Classification. IJID (International Journal on Informatics for Development), 9(2), 100–110. https://doi.org/10.14421/ijid.2020.09207

Poojary, R., Raina, R., & Mondal, A. K. (2021). Effect of data-augmentation on fine-tuned cnn model performance. IAES International Journal of Artificial Intelligence, 10(1), 84–92. https://doi.org/10.11591/ijai.v10.i1.pp84-92

Shehata, A. M., & Alaboud, N. S. (2025). Identification of Features of Architectural Heritage Using Deep Learning Techniques. Civil Engineering and Architecture, 13(4), 3280–3298. https://doi.org/10.13189/cea.2025.130431

Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on Image Data Augmentation for Deep Learning. Journal of Big Data, 6(1). https://doi.org/10.1186/s40537-019-0197-0

Su, Y. P., Hu, W. Y., Lin, J. W., Chen, Y. C., Sezer, S., & Chen, S. J. (2011). Low power Gm-boosted differential Colpitts VCO. International System on Chip Conference, 247–250. https://doi.org/10.1109/SOCC.2011.6085109

Winiarti, S., Pramono, H., & Pranolo, A. (2022). Application of Artificial Intelligence in Digital Architecture to Identify Traditional Javanese Buildings. Journal of Artificial Intelligence in Architecture, 1(1), 20–29. https://doi.org/10.24002/jarina.v1i1.4916

Yoshimura, Y., Cai, B., Wang, Z., & Ratti, C. (2019). Deep learning architect: Classification for architectural design through the eye of artificial intelligence. Lecture Notes in Geoinformation and Cartography, 249–265. https://doi.org/10.1007/978-3-030-19424-6_14

Zhao, X., Wang, L., Zhang, Y., Han, X., Deveci, M., & Parmar, M. (2024). A review of convolutional neural networks in computer vision. In Artificial Intelligence Review (Vol. 57, Issue 4). Springer Netherlands. https://doi.org/10.1007/s10462-024-10721-6

Downloads

Published

2025-07-11

How to Cite

Sri Winiarti, Sunardi, S., & Fadlil, A. (2025). Optimalisasi Kinerja Convolutional Neural Networks VGG16 dalam Identifikasi Bangunan Adat Melayu. Jurnal Teknologi Sistem Informasi Dan Aplikasi, 8(3), 219–233. https://doi.org/10.32493/jtsi.v8i3.58210