Penggunaan Data Mining untuk Analisis Pola Pembelian Pelanggan Menggunakan Metode Association Rule Algoritma Apriori (Studi Kasus di Toko Waspada)

Authors

  • Mohamad Gusmil Saparudin Universitas Pamulang
  • Sholihin Sholihin Universitas Pamulang

Keywords:

Data Mining, Association Rule, Apriori Algorithm

Abstract

Alert Shop is a store that sells a variety of products such as household items, daily necessities, accessories, and cosmetics. Analyze customer buying behavior with Alert Store bulk transaction data.. The Apriori algorithm is one of the algorithms for extracting correlation rules in the field of data mining. We apply the Apriori algorithm by using Rapid Miner to find customer buying patterns in Waspada Store sales transaction data. The methodology of this research is structured to serve as a reference for the researcher's guidance and support to the researcher in the research process, and the research design plays an important role in guiding the researcher from problem description to testing result. The rules used by the a priori algorithm can be used as criteria to evaluate elements that meet the minimum support and minimum confidence values. The confidence value of the relationship between the two points above can be considered high, and the results of these rules can be used as the basis for discussing the points above.

References

Adinugroho, S., & Sari, Y. A. (2018). Associaton Rule. In Implementasi Data Mining Menggunakan Weka (pp. 127–144). UB Press.

Fitriati, D. (2016). Implementasi Data Mining untuk Menentukan. 2(1), 472–480. http://ars.ilkom.unsri.ac.id472

Han, J., & Kember, M. (2011). Data Mining Concept and Technique. Morgan Kauffman.

Informatika, J. R. (2019). Penerapan Data Mining Terhadap Penjualan Pipa Pada CV 1(4), 167–172.

Jiwei, H., Kamber, M., & Pei, J. (2011). Data Mining: Concept and Techniques. Elseiver.

Komaruddin. (2001). Pengertian Analisis Menurut Para Ahli, KBBI dan Secara Umum. https://www.zonareferensi.com/pengertian-analisis-menurut- paraahli-dan-secara- umum/

Kusrini, & Luthfi, E. T. (2019). Algoritma A Apriori. In T. A. Prabawati (Ed.), Algoritma Data Mining (pp. 149–156). Cv Andi Offset.

Larose, D. T. (2015). Discovering Knowledge in Data: An Introduction to Data Mining. John Willey & Sons, Inc.

Lestari, N. (2017). Penerapan Data Mining Algoritma Apriori Dalam Sistem Informasi Penjualan. Jurnal Edik Informatika, 103–111.

Megayasa, I. G. P., Agus, I. K., Aryanto, A., Diputra, I. G. S., Arianta, I. N., & Rusditya, S. (2016). Implementasi Algoritma Apriori untuk Menganalisis Pola Pembelian Konsumen pada Produk SPA. Senapati, 206–210.

Sepri, D., Afdal, M., & Riau, S. (2017). Analisa Dan Perbandingan Metode Algoritma Apriori Dan Fp- Growth Untuk Mencari Pola Daerah Strategis Pengenalan Kampus Studi Kasus Di Stkip Adzkia Padang. Jurnal Sistem Informasi Kaputama (JSIK), 1(1).

Srikanti, E., Yansi, R. F., Norhavina, Permana, I., & Salisah, F. N. (2018). Penerapan Algoritma Apriori untuk Mencari Aturan Asosiasi pada Data Peminjaman Buku di Perpustakaan. Jurnal Ilmiah Rekayasa Dan Manajemen Sistem Informasi, 4(1), 77– 80.

Tana, M. P., Marisa, F., Wijaya, I. D., Informatika, J. T., & Widyagama, F. T. U. (2018). Penerapan Metode Data Mining Market Basket Analysis Terhadap Data Penjualan Produk Pada Toko Oase Menggunakan Algoritma Apriori. 3(2), 17–22.

Turban, E., & dkk. (2015). Decision Support System and Intelligent Systems. AndiOffset.

Yanto, R., & Khoiriah, R. (2015). Implementasi Data Mining dengan Metode Algoritma Apriori dalam Menentukan Pola Pembelian Obat. 102–113.

Published

2023-01-31

How to Cite

Saparudin, M. G., & Sholihin, S. (2023). Penggunaan Data Mining untuk Analisis Pola Pembelian Pelanggan Menggunakan Metode Association Rule Algoritma Apriori (Studi Kasus di Toko Waspada). Jurnal Teknologi Sistem Informasi Dan Aplikasi, 6(1), 27–33. Retrieved from https://openjournal.unpam.ac.id/index.php/JTSI/article/view/26927