Penerapan Algortitma C4.5 untuk Klasifikasi Sentimen Masyarakat terhadap #RUUKUHP pada Twitter

Authors

  • Imam Vusuvangat Universitas Islam Negeri Sultan Syarif Kasim Riau
  • Siska Kurnia Gusti Universitas Islam Negeri Sultan Syarif Kasim Riau
  • Fadhilah Syafira Universitas Islam Negeri Sultan Syarif Kasim Riau
  • Novriyanto Novriyanto Universitas Islam Negeri Sultan Syarif Kasim Riau
  • Fitri Insani Universitas Islam Negeri Sultan Syarif Kasim Riau

Keywords:

Keywords, Twitter, Community Sentiment, #RUUKUHP, C4.5 Algorithm, Sentiment classification

Abstract

Social media, especially Twitter, has developed into an important tool for people to share their opinions and feelings widely. Users often use hashtags to share messages related to certain topics. Some of the issues that lead to the need for sentiment analysis of the Draft Criminal Code are social impact, Public disapproval, Potential legal uncertainty, Potential abuse, Support and criticism. By conducting a sentiment analysis of the draft Penal Code, the government and policymakers can better understand the views of the public, identify possible problems and address them, and make necessary improvements or clarifications to the draft law. This can help ensure that the draft Penal Code has greater public support and adheres to good legal principles. The classification of public responses to this hashtag provides a significant snapshot of public attitudes and perspectives. This study aims to classify public sentiment towards the RUUKUHP hashtag on the Twitter platform using the C4.5 algorithm. This study uses a collection of tweets with the hashtag RUUKUHP which are manually categorized into two and three sentiment categories, namely positive, negative and positive, negative and neutral. In this study, data preprocessing is carried out before training the model which includes removing links, special characters, removing stopwords, and word tokenization. Furthermore, this research uses text representation methods such as TF-IDF to extract features from the tweet text and convert them into numerical vectors used by the C4.5 algorithm. After training the classification model using the C4.5 algorithm with the classified dataset, it evaluates the performance of the model with the metrics of accuracy, recall, precision, and F1 score. Experimental results using 2 categories of Negative and Positive show that the model applied with the C4.5 algorithm achieved an accuracy of 96.6% with a recall of 96.6%, a percision of 97.1% and an F1 score of 96.8. And experiments using 3 categories of Negative, Positive and Neutral achieved an accuracy of 67%, a recall of 67%, a precision of 65%, and an F1 score of 66%. Thus it can be concluded that the results of the RUUKUHP hashtag sentiment classification with 2 class predictions are more relevant than 3 sentiment class predictions with a value reaching 96.6%.

Author Biographies

Imam Vusuvangat, Universitas Islam Negeri Sultan Syarif Kasim Riau

Teknik Informatika

Siska Kurnia Gusti, Universitas Islam Negeri Sultan Syarif Kasim Riau

Teknik Informatika

Fadhilah Syafira, Universitas Islam Negeri Sultan Syarif Kasim Riau

Teknik Informatika

Novriyanto Novriyanto, Universitas Islam Negeri Sultan Syarif Kasim Riau

Teknik Informatika

Fitri Insani, Universitas Islam Negeri Sultan Syarif Kasim Riau

Teknik Informatika

References

Anggada Maulana. (2018). Konsep Dasar Data Mining. Konsep Data Mining, 1, 1–16.

Anggraini, W. P., & Utami, M. S. (2021). Klasifikasi Sentimen Masyarakat Terhadap Kebijakan Kartu Pekerja Di Indonesia. Faktor Exacta, 13(4), 255. https://doi.org/10.30998/faktorexacta.v13i4.7964

Fitriani, E., Aryanti, R., Saepudin, A., & Ardiansyah, D. (2020). Penerapan Algoritma C4.5 Untuk Klasifikasi Penempatan Tenaga Marketing. Paradigma - Jurnal Komputer Dan Informatika, 22(1), 72–78. https://doi.org/10.31294/p.v22i1.6898

Haqmanullah Pambudi, R., Darma Setiawan, B., & Indriati. (2018). Penerapan Algoritma C4.5 Untuk Memprediksi Nilai Kelulusan Siswa Sekolah Menengah Berdasarkan Faktor Eksternal. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(7), 2637–2643. http://j-ptiik.ub.ac.id

Herianto. (2019). Penerapan Text-Mining Untuk Mengidentifikasi. VIII(2), 36–44.

Hermawan, A., Jowensen, I., Junaedi, J., & Edy. (2023). Implementasi Text-Mining untuk Analisis Sentimen pada Twitter dengan Algoritma Support Vector Machine. JST (Jurnal Sains Dan Teknologi), 12(1), 129–137. https://doi.org/10.23887/jstundiksha.v12i1.52358

Hermawan, L., & Bellaniar Ismiati, M. (2020). Pembelajaran Text Preprocessing berbasis Simulator Untuk Mata Kuliah Information Retrieval. Jurnal Transformatika, 17(2), 188. https://doi.org/10.26623/transformatika.v17i2.1705

Mailo, F. F., & Lazuardi, L. (2019). Analisis Sentimen Data Twitter Menggunakan Metode Text Mining Tentang Masalah Obesitas di Indonesia. Journal of Information Systems for Public Health, 4(1), 28–36.

Mailoa, F. F. (2021). Analisis sentimen data twitter menggunakan metode text mining tentang masalah obesitas di indonesia. Journal of Information Systems for Public Health, 6(1), 44. https://doi.org/10.22146/jisph.44455

Mardi, Y. (2017). Data Mining : Klasifikasi Menggunakan Algoritma C4.5. Edik Informatika, 2(2), 213–219. https://doi.org/10.22202/ei.2016.v2i2.1465

Mubarok, R. (2021). Analisis Sentimen Pengguna Twitter Terhadap Kebijakan Pemberlakuan Pembatasan Sosial Berskala Besar (Psbb) Dengan Metode …. Jurnal Siliwangi Seri Sains Dan Teknologi, 7(1), 19–24. http://jurnal.unsil.ac.id/index.php/jssainstek/article/view/3726

Muzaki, H., Marcos, H., Letjend, J., Soemarto, P., Utara, K. P., & Banyumas, K. (2023). ANALISIS SENTIMEN RUU KUHP DI MEDSOS TWITTER DENGAN METODE NAÃVE BAYES. 7(1), 1–4.

Permana, A. P., Ainiyah, K., & Holle, K. F. H. (2021). Analisis Perbandingan Algoritma Decision Tree, kNN, dan Naive Bayes untuk Prediksi Kesuksesan Start-up. JISKA (Jurnal Informatika Sunan Kalijaga), 6(3), 178–188. https://doi.org/10.14421/jiska.2021.6.3.178-188

Puspita, R., & Widodo, A. (2021). Perbandingan Metode KNN, Decision Tree, dan Naïve Bayes Terhadap Analisis Sentimen Pengguna Layanan BPJS. Jurnal Informatika Universitas Pamulang, 5(4), 646. https://doi.org/10.32493/informatika.v5i4.7622

Seno, D. W., & Wibowo, A. (2019). Analisis Sentimen Data Twitter Tentang Pasangan Capres-Cawapres Pemilu 2019 Dengan Metode Lexicon Based Dan Support Vector Machine. Jurnal Ilmiah FIFO, 11(2), 144. https://doi.org/10.22441/fifo.2019.v11i2.004

Siahaan, S. W., Sianipar, K. D. R., R.H Zer, P. P. P. A. N. . F. I., & Hartama, D. (2020). Penerapan Algoritma C4.5 Dalam Meningkatkan Kemampuan Bahasa Inggris Pada Mahasiswa. Petir, 13(2), 229–239. https://doi.org/10.33322/petir.v13i2.1029

Sidiq, R. P., Dermawan, B. A., & Umaidah, Y. (2020). Sentimen Analisis Komentar Toxic pada Grup Facebook Game Online Menggunakan Klasifikasi Naïve Bayes. Jurnal Informatika Universitas Pamulang, 5(3), 356. https://doi.org/10.32493/informatika.v5i3.6571

Somantri, O., & Dairoh, D. (2019). Analisis Sentimen Penilaian Tempat Tujuan Wisata Kota Tegal Berbasis Text Mining. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 5(2), 191. https://doi.org/10.26418/jp.v5i2.32661

Suryono, S., Utami, E., & Luthfi, E. T. (2018). Klasifikasi Sentimen Pada Twitter Dengan Naive Bayes Classifier. Angkasa: Jurnal Ilmiah Bidang Teknologi, 10(1), 89. https://doi.org/10.28989/angkasa.v10i1.218

Wulandari, Y., Haerani, E., Gusti, S. K., & Ramadhani, S. (2022). Klasifikasi Berita Menggunakan Algoritma C4.5. Jurnal Nasional Komputasi Dan Teknologi Informasi (JNKTI), 5(2), 279–289. https://doi.org/10.32672/jnkti.v5i2.4194

Downloads

Published

2023-10-30

How to Cite

Vusuvangat, I., Kurnia Gusti, S., Syafira, F., Novriyanto, N., & Insani, F. (2023). Penerapan Algortitma C4.5 untuk Klasifikasi Sentimen Masyarakat terhadap #RUUKUHP pada Twitter. Jurnal Teknologi Sistem Informasi Dan Aplikasi, 6(4), 661–670. Retrieved from https://openjournal.unpam.ac.id/index.php/JTSI/article/view/33814