Penerapan Algortitma C4.5 untuk Klasifikasi Sentimen Masyarakat terhadap #RUUKUHP pada Twitter
Keywords:
Keywords, Twitter, Community Sentiment, #RUUKUHP, C4.5 Algorithm, Sentiment classificationAbstract
Social media, especially Twitter, has developed into an important tool for people to share their opinions and feelings widely. Users often use hashtags to share messages related to certain topics. Some of the issues that lead to the need for sentiment analysis of the Draft Criminal Code are social impact, Public disapproval, Potential legal uncertainty, Potential abuse, Support and criticism. By conducting a sentiment analysis of the draft Penal Code, the government and policymakers can better understand the views of the public, identify possible problems and address them, and make necessary improvements or clarifications to the draft law. This can help ensure that the draft Penal Code has greater public support and adheres to good legal principles. The classification of public responses to this hashtag provides a significant snapshot of public attitudes and perspectives. This study aims to classify public sentiment towards the RUUKUHP hashtag on the Twitter platform using the C4.5 algorithm. This study uses a collection of tweets with the hashtag RUUKUHP which are manually categorized into two and three sentiment categories, namely positive, negative and positive, negative and neutral. In this study, data preprocessing is carried out before training the model which includes removing links, special characters, removing stopwords, and word tokenization. Furthermore, this research uses text representation methods such as TF-IDF to extract features from the tweet text and convert them into numerical vectors used by the C4.5 algorithm. After training the classification model using the C4.5 algorithm with the classified dataset, it evaluates the performance of the model with the metrics of accuracy, recall, precision, and F1 score. Experimental results using 2 categories of Negative and Positive show that the model applied with the C4.5 algorithm achieved an accuracy of 96.6% with a recall of 96.6%, a percision of 97.1% and an F1 score of 96.8. And experiments using 3 categories of Negative, Positive and Neutral achieved an accuracy of 67%, a recall of 67%, a precision of 65%, and an F1 score of 66%. Thus it can be concluded that the results of the RUUKUHP hashtag sentiment classification with 2 class predictions are more relevant than 3 sentiment class predictions with a value reaching 96.6%.
References
Anggada Maulana. (2018). Konsep Dasar Data Mining. Konsep Data Mining, 1, 1–16.
Anggraini, W. P., & Utami, M. S. (2021). Klasifikasi Sentimen Masyarakat Terhadap Kebijakan Kartu Pekerja Di Indonesia. Faktor Exacta, 13(4), 255. https://doi.org/10.30998/faktorexacta.v13i4.7964
Fitriani, E., Aryanti, R., Saepudin, A., & Ardiansyah, D. (2020). Penerapan Algoritma C4.5 Untuk Klasifikasi Penempatan Tenaga Marketing. Paradigma - Jurnal Komputer Dan Informatika, 22(1), 72–78. https://doi.org/10.31294/p.v22i1.6898
Haqmanullah Pambudi, R., Darma Setiawan, B., & Indriati. (2018). Penerapan Algoritma C4.5 Untuk Memprediksi Nilai Kelulusan Siswa Sekolah Menengah Berdasarkan Faktor Eksternal. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(7), 2637–2643. http://j-ptiik.ub.ac.id
Herianto. (2019). Penerapan Text-Mining Untuk Mengidentifikasi. VIII(2), 36–44.
Hermawan, A., Jowensen, I., Junaedi, J., & Edy. (2023). Implementasi Text-Mining untuk Analisis Sentimen pada Twitter dengan Algoritma Support Vector Machine. JST (Jurnal Sains Dan Teknologi), 12(1), 129–137. https://doi.org/10.23887/jstundiksha.v12i1.52358
Hermawan, L., & Bellaniar Ismiati, M. (2020). Pembelajaran Text Preprocessing berbasis Simulator Untuk Mata Kuliah Information Retrieval. Jurnal Transformatika, 17(2), 188. https://doi.org/10.26623/transformatika.v17i2.1705
Mailo, F. F., & Lazuardi, L. (2019). Analisis Sentimen Data Twitter Menggunakan Metode Text Mining Tentang Masalah Obesitas di Indonesia. Journal of Information Systems for Public Health, 4(1), 28–36.
Mailoa, F. F. (2021). Analisis sentimen data twitter menggunakan metode text mining tentang masalah obesitas di indonesia. Journal of Information Systems for Public Health, 6(1), 44. https://doi.org/10.22146/jisph.44455
Mardi, Y. (2017). Data Mining : Klasifikasi Menggunakan Algoritma C4.5. Edik Informatika, 2(2), 213–219. https://doi.org/10.22202/ei.2016.v2i2.1465
Mubarok, R. (2021). Analisis Sentimen Pengguna Twitter Terhadap Kebijakan Pemberlakuan Pembatasan Sosial Berskala Besar (Psbb) Dengan Metode …. Jurnal Siliwangi Seri Sains Dan Teknologi, 7(1), 19–24. http://jurnal.unsil.ac.id/index.php/jssainstek/article/view/3726
Muzaki, H., Marcos, H., Letjend, J., Soemarto, P., Utara, K. P., & Banyumas, K. (2023). ANALISIS SENTIMEN RUU KUHP DI MEDSOS TWITTER DENGAN METODE NAÃVE BAYES. 7(1), 1–4.
Permana, A. P., Ainiyah, K., & Holle, K. F. H. (2021). Analisis Perbandingan Algoritma Decision Tree, kNN, dan Naive Bayes untuk Prediksi Kesuksesan Start-up. JISKA (Jurnal Informatika Sunan Kalijaga), 6(3), 178–188. https://doi.org/10.14421/jiska.2021.6.3.178-188
Puspita, R., & Widodo, A. (2021). Perbandingan Metode KNN, Decision Tree, dan Naïve Bayes Terhadap Analisis Sentimen Pengguna Layanan BPJS. Jurnal Informatika Universitas Pamulang, 5(4), 646. https://doi.org/10.32493/informatika.v5i4.7622
Seno, D. W., & Wibowo, A. (2019). Analisis Sentimen Data Twitter Tentang Pasangan Capres-Cawapres Pemilu 2019 Dengan Metode Lexicon Based Dan Support Vector Machine. Jurnal Ilmiah FIFO, 11(2), 144. https://doi.org/10.22441/fifo.2019.v11i2.004
Siahaan, S. W., Sianipar, K. D. R., R.H Zer, P. P. P. A. N. . F. I., & Hartama, D. (2020). Penerapan Algoritma C4.5 Dalam Meningkatkan Kemampuan Bahasa Inggris Pada Mahasiswa. Petir, 13(2), 229–239. https://doi.org/10.33322/petir.v13i2.1029
Sidiq, R. P., Dermawan, B. A., & Umaidah, Y. (2020). Sentimen Analisis Komentar Toxic pada Grup Facebook Game Online Menggunakan Klasifikasi Naïve Bayes. Jurnal Informatika Universitas Pamulang, 5(3), 356. https://doi.org/10.32493/informatika.v5i3.6571
Somantri, O., & Dairoh, D. (2019). Analisis Sentimen Penilaian Tempat Tujuan Wisata Kota Tegal Berbasis Text Mining. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 5(2), 191. https://doi.org/10.26418/jp.v5i2.32661
Suryono, S., Utami, E., & Luthfi, E. T. (2018). Klasifikasi Sentimen Pada Twitter Dengan Naive Bayes Classifier. Angkasa: Jurnal Ilmiah Bidang Teknologi, 10(1), 89. https://doi.org/10.28989/angkasa.v10i1.218
Wulandari, Y., Haerani, E., Gusti, S. K., & Ramadhani, S. (2022). Klasifikasi Berita Menggunakan Algoritma C4.5. Jurnal Nasional Komputasi Dan Teknologi Informasi (JNKTI), 5(2), 279–289. https://doi.org/10.32672/jnkti.v5i2.4194
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Imam Vusuvangat, Siska Kurnia Gusti, Fadhilah Syafira, Novriyanto Novriyanto, Fitri Insani
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Teknologi Sistem Informasi dan Aplikasi have CC BY-NC or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work.
In developing strategy and setting priorities, Jurnal Teknologi Sistem Informasi dan Aplikasi recognize that free access is better than priced access, libre access is better than free access, and libre under CC BY-NC or the equivalent is better than libre under more restrictive open licenses. We should achieve what we can when we can. We should not delay achieving free in order to achieve libre, and we should not stop with free when we can achieve libre.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License
YOU ARE FREE TO:
- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms