Penutupan Kompetensi Keahlian SMK dengan Pendekatan Klasifikasi Minat Siswa Menggunakan Jaringan Syaraf Tiruan
Kata Kunci:
Klasifikasi, Minat Siswa, Neural Network, BackpropagationAbstrak
Kurangnya daya tarik pada kompetensi keahlian Teknik Audio dan Video (TAV) SMK Muhammadiyah 9 Kota Medan menyebabkan minimnya jumlah siswa pada kompetensi tersebut. Oleh karena itu, pihak sekolah membutuhkan informasi tambahan sebagai alat bantu mereka dalam mengambil suatu kebijakan untuk tetap melanjutkan atau memberhentikan kompetensi keahlian tersebut. Dengan memanfaatkan pendekatan Jaringan Syaraf Tiruan (JST), peneliti bermaksud membangun model klasifikasi minat siswa berdasarkan dataset psikologis siswa yang dapat dijadikan sebagai alat bantu dalam menganalisis minat siswa pada kompetensi keahlian TAV. Model klasifikasi dibangun menggunakan 115 data yang dibagi menjadi 92 data pelatihan dan 23 data pengujian. Dimana data tersebut akan ditransformasikan ke dalam bentuk bilangan biner (1 dan 0) agar dapat melakukan pembelajaran dengan baik. Hasil penelitian ini menunjukkan model dapat melakukan klasifikasi minat siswa dengan sangat baik ke dalam label kelas “tertarik†dan “tidak tertarik†yang dibuktikan dengan nilai akurasi sebesar 98,9% pada data pelatihan dan 95,65% pada data pengujian.
Referensi
Akhmad Hizham, F., Nurdiansyah, Y., & Media Firmansyah, D. (2018). Implementasi Metode Backpropagation Neural Network (BNN) dalam Sistem Klasifikasi Ketepatan Waktu Kelulusan Mahasiswa (Studi Kasus: Program Studi Sistem Informasi Universitas Jember). Berkala Sinstek, 6(2), 97–105.
Arianto, F. S. D., & Noviyanti. (2020). Prediksi Kasus COVID - 19 di Indonesia Menggunakan Metode Backpropagation dan Fuzzy Tsukamoto. Jurnal Teknologi Informasi, 4(1), 120–127. https://doi.org/10.36294/jurti.v4i1.1265
Atika, P. dina. (2019). Prediksi Wilayah Calon Siswa Baru Menggunakan Jaringan Syaraf Tiruan dengan Model Backpropagation untuk Optimasi Promosi. Jurnal Teknologi Terpadu, 5(2), 89–99. https://doi.org/10.54914/jtt.v5i2.225
Finaliamartha, D., Supriyadi, D., & Fitriana, G. F. (2022). Penerapan Metode Jaringan Syaraf Tiruan Backpropagation Untuk Prediksi Tingkat Kemiskinan di Provinsi Jawa Tengah. Jurnal Teknologi Informasi Dan Ilmu Komputer, 9(4), 751–760. https://doi.org/10.25126/jtiik.202294806
Hadianto, N., Novitasari, H. B., & Rahmawati, A. (2019). Klasifikasi Peminjaman Nasabah Bank Menggunakan Metode Neural Network. Jurnal Pilar Nusa Mandiri, 15(2), 163–170. https://doi.org/10.33480/pilar.v15i2.658
Hasanah, S. H., & Permatasari, S. M. (2020). Metode Klasifikasi Jaringan Syaraf Tiruan Backpropagation Pada Mahasiswa Statistika Universitas Terbuka. BAREKENG : Jurnal Ilmu Matematika Dan Terapan, 14(2), 243–252. https://doi.org/10.30598/barekengvol14iss2pp243-252
Jayanti, K., Lumbanbatu, K., & Ramadani, S. (2021). Memprediksi Jumlah Siswa Baru Menggunakan Metode Backpropagation (Studi Kasus : SMK Harapan Bangsa Kuala). JUKI : Jurnal Komputer Dan Informatika, 3(1), 10–16. https://doi.org/10.53842/juki.v3i1.40
Kurniawan, D. (2020). Pengenalan Machine Learning dengan Python. Jakarta : PT Elex Media Komputindo.
Kusuma, P. D. (2020). Machine Learning : Teori, Program, dan Studi Kasus. Yogyakarta : Deepublish Publisher.
Lastya, H. A. (2019). Minat Siswa SMK Kelas XII Program Keahlian Teknik Instalasi Tenaga Listrik Masuk Perguruan Tinggi Ditinjau dari Faktor Internal dan Eksternal di SMK Negeri 2 Langsa. Jurnal Ilmiah DIDAKTIKA, 19(2), 193–214.
Masruroh, & Fitriani, S. (2021). Evaluasi Implementasi Program Bantuan Operasional Sekolah (Bos) di SMK YPK Kesatuan Jakarta. Aksara: Jurnal Ilmu Pendidikan Nonformal, 7(2), 551–561. https://doi.org/10.37905/aksara.7.2.551-562.2021
Nurlela, S., Akmaludin, Hadianti, S., & Yusuf, L. (2019). Penyeleksian Jurusan Terfavorit pada SMK Sirajul Falah dengan Metode SAW. Pilar Nusa Mandiri, 15(1), 1–6. www.nusamandiri.ac.id
Okprana, H., Lubis, M. R., & Hadinata, J. T. (2020). Prediksi Kelulusan TOEFL Menggunakan Metode Resilient Backpropagation. Jurnal Edukasi Dan Penelitian Informatika, 6(2), 275–279.
Perdana, N. S. (2019). Analisis Permintaan dan Penawaran Lulusan SMK dalam Pemenuhan Pasar Tenaga Kerja. Refleksi Edukatika : Jurnal Ilmiah Kependidikan , 9(2), 172–181.
Permana, A. A., Wahyudin, & Santoso, L. W. (2023). Machine Learning (Pertama). Padang : PT Global Eksekutif Teknologi.
Susilawati, & Muhathir. (2019). Analisis Pengaruh Fungsi Aktivasi, Learning Rate Dan Momentum Dalam Menentukan Mean Square Error (MSE) Pada Jaringan Saraf Restricted Boltzmann Machines (RBM). JITE, 2(2), 77–91. http://ojs.uma.ac.id/index.php/jite
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2023 Muhammad Ihsan Nugraha, Armansyah
Artikel ini berlisensi Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Teknologi Sistem Informasi dan Aplikasi have CC BY-NC or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work.
In developing strategy and setting priorities, Jurnal Teknologi Sistem Informasi dan Aplikasi recognize that free access is better than priced access, libre access is better than free access, and libre under CC BY-NC or the equivalent is better than libre under more restrictive open licenses. We should achieve what we can when we can. We should not delay achieving free in order to achieve libre, and we should not stop with free when we can achieve libre.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License
YOU ARE FREE TO:
- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms