Deteksi dan Pengenalan Jenis Corak Batik Nusantara Menggunakan Metode CNN Berbasis Android

Penulis

Kata Kunci:

Batik, Detection, CNN, Android

Abstrak

This research aims to develop a system for the detection and recognition of traditional Indonesian batik patterns using Convolutional Neural Network (CNN) method based on the Android platform, utilizing TensorFlow Lite as the framework. The research is motivated by the importance of preserving and promoting the cultural heritage of batik patterns, which represent the distinctive and treasured cultural identity of Indonesia. The methodology involves training a CNN model using a dataset consisting of 500 images of various batik patterns from 10 different types of batik. The dataset is divided into training and testing data in an 80:20 ratio. The results of the research indicate that the developed model for the detection and classification of batik patterns achieves high accuracy, with a training data accuracy of 92.25% and a testing data accuracy of 94%. In conclusion, the research demonstrates that the developed model is capable of accurately recognizing and detecting various traditional batik patterns. The research has practical benefits for the public, as it enhances knowledge and understanding of different batik patterns. Furthermore, the research contributes to the advancement of knowledge and the researcher's proficiency in implementing the CNN method for real-time detection of batik patterns.

Biografi Penulis

Faiq Fahrian Khoirul Anam Al Aziz, Universitas Stikubank Semarang

Student

Referensi

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Zheng, X. (2016, November). Tensorflow: a system for large-scale machine learning. In Osdi (Vol. 16, No. 2016, pp. 265-283).

Agustin, A. (2014). Sejarah batik dan motif batik di Indonesia. In Seminar Nasional RisetInovatif II (No. 2339-1553, p. 541).

Alfikri, R. H., Utomo, M. S., Februariyanti, H., & Nurwahyudi, E. (2022). Pembangunan Aplikasi Penerjemah Bahasa Isyarat Dengan Metode Cnn Berbasis Android. Jurnal Teknoinfo, 16(2), 183-197.

Arifianto, J. (2022). Aplikasi Web Pendeteksi Jerawat Pada Wajah Menggunakan Model Deep Learning Dengan Tensorflow.

Bariyah, T., Rasyidi, M. A., & Ngatini, N. (2021). Convolutional Neural Network untuk metode klasifikasi multi-label pada motif batik. Techno. Com, 20(1), 155-165.

Gonzalez, R.C., Woods, R.E., dan Eddins, S.L. (2004). Digital Image Processing Using MATLAB. Pearson Education.

Khan, S., H. Rahmani, S. Shah, and D.M Bennamoun. (2018). A Guide to Convolutional Neural Networks for Computer Vision. New York: Morgan & Claypool Publishers.

Lestari, S. D. (2012). Mengenal Aneka Batik. PT Balai Pustaka (Persero).

Maiyana, E. (2018). Pemanfaatan android dalam perancangan aplikasi kumpulan doa. Jurnal Sains dan Informatika: Research of Science and Informatic, 4(1), 54-65.

Putri, R. A., & Rochmawati, N. (2019). Penerapan Algoritma Support Vector Machine untuk Klasifikasi Motif Citra Batik Solo Berdasarkan Fitur Multi-Autoencoders. Journal of Informatics and Computer Science (JINACS), 1(01), 56-63

Saefurrohman, S., & Ningsih, D. H. U. (2016). Desain Motif Batik Dengan Metode Fraktal Dan Algoritma L-System untuk Membangun Pustaka Batik Wali. Dinamik, 21(1), 42-51.

Savitri, A. (2019). Revolusi industri 4.0: mengubah tantangan menjadi peluang di era disrupsi 4.0. Penerbit Genesis.

Shafira, T. (2018). Implementasi Convolutional Neural Networks Untuk Klasifikasi Citra Tomat Menggunakan Keras (Doctoral dissertation, Universitas Islam Indonesia).

Zindani, A. Y., Amalia, A., & Putro, F. W. (2020). Pendeteksi Kendaraan Untuk Keamanan Perlintasan Kereta Api. Lomba Karya Tulis Ilmiah, 1(1), 35-47.

Unduhan

Diterbitkan

2023-04-30

Cara Mengutip

Al Aziz, F. F. K. A., & Saefurrohman, S. (2023). Deteksi dan Pengenalan Jenis Corak Batik Nusantara Menggunakan Metode CNN Berbasis Android. Jurnal Teknologi Sistem Informasi Dan Aplikasi, 6(2), 191–201. Diambil dari https://openjournal.unpam.ac.id/index.php/JTSI/article/view/32142