Unjuk Kerja Prototipe Turbine Blades pada Pembangkit Listrik Tenaga Angin Sistem Floating di Indonesia
Keywords:
Vortisitas, Elektromagnetik, PiezoelektrikAbstract
Pertumbuhan penduduk yang terus meningkat mendorong kenaikan kebutuhan energi, sehingga pemanfaatan energi terbarukan menjadi semakin penting. Di Indonesia, pengembangan energi angin masih sangat terbatas dan hanya sedikit penelitian yang berhasil mengonversinya menjadi energi listrik. Turbin angin berbasis vortisitas muncul sebagai inovasi baru dengan perkembangan signifikan, menawarkan konsep berbeda dari turbin konvensional melalui pemanfaatan getaran sebagai sumber energi yang kemudian diubah menjadi listrik oleh sistem generator. Mekanisme elektromagnetik dalam sistem ini dihasilkan dari pergerakan magnet yang berosilasi akibat pegas progresif di dalam lilitan kawat, sementara generator berperan mengubah energi mekanik menjadi energi listrik arus searah melalui komutator yang umum digunakan sebagai penguat dalam aplikasi industri. Penelitian ini menggunakan metode studi literatur untuk memperoleh dasar teori, informasi, dan data relevan terkait topik penelitian. Hasil kajian menunjukkan bahwa daya keluaran terbesar (Pout) diperoleh pada kecepatan angin 8 m/s dengan diameter piezoelektrik 50 mm, sedangkan daya terendah terjadi pada kecepatan 3 m/s dengan diameter 35 mm; sementara itu, efisiensi tertinggi (ⴄG) muncul pada kecepatan angin 3 m/s dengan diameter piezoelektrik 50 mm, dan efisiensi terendah ditemukan pada kecepatan 8 m/s dengan diameter 35 mm.
Abstract: The continuous growth of the population has led to an increased demand for energy, making the development of renewable sources increasingly essential. In Indonesia, the utilization of wind energy remains limited, with only a few studies successfully converting it into electrical power. Vorticity-based wind turbines have emerged as a rapidly advancing innovation, introducing a concept distinct from conventional turbines by harnessing vibrations as an energy source, which are then converted into electricity through a generator system. The electromagnetic mechanism is generated by the oscillating motion of a magnet driven by a progressive spring within a wire coil, while the generator functions to convert mechanical energy into direct current (DC) electricity via a commutator commonly used as a booster in industrial applications. This study employs a literature review approach to provide theoretical grounding and gather relevant information and data related to the research topic. The findings indicate that the highest output power (Pout) is achieved at a wind speed of 8 m/s with a piezoelectric diameter of 50 mm, whereas the lowest output occurs at 3 m/s with a diameter of 35 mm. Meanwhile, the highest efficiency (ⴄG) is obtained at a wind speed of 3 m/s with a 50 mm piezoelectric diameter, and the lowest efficiency is found at 8 m/s with a 35 mm diameter.
References
[1] M. E. Murniati and Sudarti, “Analisis Potensi Energi Angin Sebagai Pembangkit Enegi Listrik Tenaga Angin Di Daerah Banyuwangi Kota Menggunakan Database Online-BMKG,” J. Surya Energy, vol. 6, no. 1, pp. 9–16, 2021, doi: https://doi.org/10.32502/jse.v6i1.3364.
[2] R. Wiser, M. Bolinger, and E. Lantz, “Assessing wind power operating costs in the United States: Results from a survey of wind industry experts,” Renew. Energy Focus, vol. 30, pp. 46–57, 2019, doi: https://doi.org/10.1016/j.ref.2019.05.003.
[3] A. Elia, M. Taylor, B. Ó Gallachóir, and F. Rogan, “Wind turbine cost reduction: A detailed bottom-up analysis of innovation drivers,” Energy Policy, vol. 147, p. 111912, 2020, doi: https://doi.org/10.1016/j.enpol.2020.111912.
[4] C. M. Asre, V. K. Kurkute, and N. J. Kanu, “Power generation with the application of vortex wind turbine,” Mater. Today Proc., vol. 56, pp. 2428–2436, 2022, doi: https://doi.org/10.1016/j.matpr.2021.08.228.
[5] I. Bahadur, “Dynamic Modeling and Investigation of a Tunable Vortex Bladeless Wind Turbine,” Energies, vol. 15, no. 18. p. 6773, 2022. doi: https://doi.org/10.3390/en15186773.
[6] W. Sunarlik, “Prinsip Kerja Generator,” J. Pendidik. Tek. Mesin, p. 6, 2017.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Muh. Tegar Kelana, Joko Setiyono

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
