Analisis Transfer Panas melalui Pengukuran Distribusi Suhu pada Proses Pemanasan Aluminium Seri 5052 menggunakan Metode Hot Plate
Keywords:
Aluminium, Heat Treatment, Hot Plate, KonduktorAbstract
Aluminium merupakan unsur kimia golongan IIIA yang memiliki lambang Al dengan nomor atom 13 dan berat atom 26,98 gram per mol, serta sangat berlimpah. Aluminium tidak termasuk jenis logam berat, tetapi merupakan elemen yang berjumlah 8% dari permukaan bumi. Unsur kimia ini merupakan konduktor listrik yang baik, memiliki tahanan jenis 2,8× atau 1,25 tahanan jenis tembaga, serta bersifat ringan dan kuat. Dalam penelitian ini dilakukan perlakuan panas pada aluminium yang akan dianalisis distribusi panasnya. Dari beberapa jurnal yang dibaca penulis, terdapat pembahasan mengenai kelebihan dan kekurangan aluminium baik sebagai isolator (pemutus panas dan penghantar) maupun sebagai konduktor. Hasil penelitian ini adalah distribusi suhu. Pada pengujian pertama menggunakan suhu pemanasan 100 °C dengan penahanan panas selama 20 menit, dihasilkan nilai tertinggi sebesar 1,0705 kW/m²·K pada spesimen pengujian 1 dan spesimen 3 secara konduksi, dan bila dirata-ratakan distribusinya sebesar 1,06943 kW/m²·K. Distribusi secara konveksi menghasilkan nilai tertinggi pada sampel pengujian 1 sebesar 3,1635 kW/m²·°C, dan bila dirata-ratakan nilai distribusinya sebesar 3,1571 kW/m²·°C. Pada pengujian kedua (material baru) dengan menaikkan suhu menjadi 200 °C, dihasilkan nilai tertinggi sebesar 2,5516 kW/m²·K pada sampel pengujian 1; bila dirata-ratakan maka perpindahannya sebesar 2,55373 kW/m²·K secara konduksi. Distribusi secara konveksi memberikan nilai tertinggi pada sampel pengujian 2 sebesar 7,543 kW/m²·°C, dan bila dirata-ratakan sebesar 7,5350 kW/m²·°C. Pada pengujian ketiga dengan suhu pemanasan sekitar 300 °C, distribusi secara konduksi menghasilkan nilai tertinggi sebesar 3,9875 kW/m²·K pada sampel pengujian 2, dan bila dirata-ratakan sebesar 3,98536 kW/m²·K. Distribusi secara konveksi menghasilkan nilai tertinggi sebesar 11,7657 kW/m²·°C pada sampel pengujian 2, dan bila dirata-ratakan sebesar 11,7594 kW/m²·°C.
Abstract: Aluminum is a Group IIIA chemical element with the symbol Al, atomic number 13, and an atomic weight of 26.98 grams per mole, and it is one of the most abundant elements in the earth’s crust. Although not classified as a heavy metal, aluminum constitutes approximately 8% of the earth’s surface. It is a good electrical conductor, possessing a resistivity value of about 2.8× or 1.25 times that of copper, and is known for its lightweight yet strong characteristics. This study investigates the heat distribution on aluminum subjected to heat treatment. A review of related literature highlights the advantages and limitations of aluminum when functioning as an insulator (heat interrupter and transmitter) and as a conductor. The results of this study present the temperature distribution under various heating conditions. In the first test, using a heating temperature of 100 °C with a holding time of 20 minutes, the highest conduction value was 1.0705 kW/m²·K for specimens 1 and 3, with an average distribution of 1.06943 kW/m²·K. Convective distribution reached its highest value at 3.1635 kW/m²·°C for specimen 1, with an average of 3.1571 kW/m²·°C. In the second test, using a new sample heated at 200 °C, the highest conduction value was 2.5516 kW/m²·K for specimen 1, while the average was 2.55373 kW/m²·K. The highest convective value, 7.543 kW/m²·°C, occurred in specimen 2, with an average of 7.5350 kW/m²·°C. In the third test at approximately 300 °C, the highest conduction distribution was 3.9875 kW/m²·K for specimen 2, with an average of 3.98536 kW/m²·K. Convective distribution reached a maximum of 11.7657 kW/m²·°C in specimen 2, with an average of 11.7594 kW/m²·°C.
References
[1] M. Merli, C. Bonadiman, and A. Pavese, “Aluminium distribution in an Earth’s non–primitive lower mantle,” Geochim. Cosmochim. Acta, vol. 276, pp. 70–91, 2020, doi: https://doi.org/10.1016/j.gca.2020.02.023.
[2] K. N. Subedi, K. Kappagantula, F. Kraft, A. Nittala, and D. A. Drabold, “Electrical conduction processes in aluminum: Defects and phonons,” Phys. Rev. B, vol. 105, no. 10, p. 104114, Mar. 2022, doi: https://doi.org/10.1103/PhysRevB.105.104114.
[3] G. Wu et al., “Hierarchical nanostructured aluminum alloy with ultrahigh strength and large plasticity,” Nat. Commun., vol. 10, no. 1, p. 5099, 2019, doi: https://doi.org/10.1038/s41467-019-13087-4.
[4] D. Luo, F. Li, and G. Xing, “Corrosion resistance of 6061-T6 aluminium alloy and its feasibility of near-surface reinforcements in concrete structure,” vol. 61, no. 1, pp. 638–653, 2022, doi: https://doi.org/10.1515/rams-2022-0048.
[5] X. Atanacio-Sánchez et al., “Enhancement of the Electrical Conductivity and Mechanical Properties of Al-Mg-Si and Al-Mg-Zn Ternary Systems After a T8 Heat Treatment,” Metals, vol. 14, no. 11. p. 1286, 2024. doi: https://doi.org/10.3390/met14111286.
[6] S. K. Padamata, A. Yasinskiy, and P. Polyakov, “A Review of Secondary Aluminum Production and Its Byproducts,” JOM, vol. 73, no. 9, pp. 2603–2614, 2021, doi: https://doi.org/10.1007/s11837-021-04802-y.
[7] R. P. Verma, K. N. Pandey, K. András, R. Khargotra, and T. Singh, “Difficulties and redressal in joining of aluminium alloys by GMA and GTA welding: a review,” J. Mater. Res. Technol., vol. 23, pp. 2576–2586, 2023, doi: https://doi.org/10.1016/j.jmrt.2023.01.183.
[8] Y.-C. Hua, T. Zhao, and Z.-Y. Guo, “Irreversibility and Action of the Heat Conduction Process,” Entropy, vol. 20, no. 3. p. 206, 2018. doi: https://doi.org/10.3390/e20030206.
[9] A. Zhang and Y. Li, “Thermal Conductivity of Aluminum Alloys-A Review.,” Mater. (Basel, Switzerland), vol. 16, no. 8, p. 2972, Apr. 2023, doi: https://doi.org/10.3390/ma16082972.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Nikmal Atok, Nur Rohmat, Edi Tri Astuti

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
