Analisis Keausan dan Usia Pakai Dudukan Benda Kerja dengan Variasi Diameter Lubang pada Alat Uji Jominy Test
Keywords:
Jominy test, Baja ST60, Dudukan Benda Uji, LubangAbstract
Dudukan benda kerja pada alat uji Jominy test merupakan tempat berlangsungnya proses pengujian tersebut. Permasalahan yang muncul adalah dudukan cenderung menyerap dan menahan panas dari spesimen selama pendinginan, sehingga mempercepat penurunan usia pakai dan menyebabkan pengikisan pada diameter lubangnya. Penelitian ini bertujuan untuk menganalisis perubahan diameter lubang akibat keausan, menentukan usia pakai dudukan setelah pengujian, serta menghitung nilai rata-rata dan deviasi pada komponen dudukan mesin Jominy test. Penelitian ini menggunakan teknik pengujian secara langsung, yaitu mengamati dan mencatat secara langsung hasil eksperimen, kemudian menyajikan data dan menyimpulkan hasil penelitian. Hasil perhitungan menunjukkan bahwa nilai tegangan sebesar 0,16 N/m² dan nilai regangan sebesar 0,0008 mm, sedangkan momen inersia diperoleh sebesar 0,01512 kg·m² atau 0,01512 Nm. Pada perhitungan defleksi diperoleh nilai 4,6 × 10⁻⁵ m. Hasil pengujian menunjukkan bahwa rata-rata keausan lubang berbeda pada setiap variasi temperatur, memperlihatkan pengaruh signifikan suhu terhadap tingkat pengikisan diameter dudukan spesimen. Keausan terbesar terjadi pada lubang dudukan spesimen berdiameter 27 mm, yaitu sebesar 0,026 mm. Keausan terendah terdapat pada lubang berdiameter 29 mm, yaitu sebesar 0,001 mm, sedangkan pada dudukan spesimen berdiameter 28 mm, nilai keausannya berkisar antara 0,007 mm hingga 0,010 mm. Dari hasil perhitungan dapat disimpulkan bahwa usia pakai dudukan dengan diameter lubang 27 mm adalah 2.286 kali pengujian, diameter 28 mm adalah 4.000 kali pengujian, dan diameter 29 mm mencapai 32.000 kali pengujian. Sementara itu, nilai deviasi atau simpangan rata-rata pada dudukan benda kerja berdiameter 27 mm dengan temperatur 400°C adalah 0,0012 mm, pada 500°C sebesar 0,0057 mm, dan pada 600°C sebesar 0,0058 mm. Pada dudukan berdiameter 28 mm, nilai deviasi pada temperatur 400°C adalah 0,0012 mm, 500°C sebesar 0,0024 mm, dan 600°C sebesar 0,001 mm. Adapun pada dudukan berdiameter 29 mm, deviasi pada temperatur 400°C, 500°C, dan 600°C memiliki nilai yang sama, yaitu 0,0007 mm.
Abstract: The specimen holder on the Jominy test apparatus serves as the location where the hardness testing process takes place. A recurring issue is that the holder tends to absorb and retain heat from the specimen during cooling, which accelerates the degradation of its service life and causes wear on the hole diameter. This study aims to analyze changes in hole diameter due to wear, determine the service life of the holder after repeated testing, and calculate the mean values and deviations of the components of the Jominy test holder. The research employed a direct testing method by observing and recording experimental results, followed by data presentation and conclusion drawing. The calculations showed that the stress value was 0.16 N/m² and the strain value was 0.0008 mm, while the moment of inertia was found to be 0.01512 kg·m² or 0.01512 Nm. The deflection value obtained was 4.6 × 10⁻⁵ m. The results further indicated that the average wear of the hole varied at each temperature level, demonstrating a significant influence of temperature on the degree of diameter degradation. The highest wear occurred in the holder hole with a diameter of 27 mm, amounting to 0.026 mm. The lowest wear was found in the 29 mm hole, which was 0.001 mm, while for the 28 mm diameter holder, wear ranged between 0.007 mm and 0.010 mm. Based on the calculations, the estimated service life of the holder with a 27 mm hole was 2,286 test cycles; for the 28 mm hole, 4,000 cycles; and for the 29 mm hole, 32,000 cycles. Meanwhile, the deviation values for the 27 mm diameter holder at temperatures of 400°C, 500°C, and 600°C were 0.0012 mm, 0.0057 mm, and 0.0058 mm, respectively. For the 28 mm holder, the deviations were 0.0012 mm at 400°C, 0.0024 mm at 500°C, and 0.001 mm at 600°C. For the 29 mm holder, all temperature variations (400°C, 500°C, and 600°C) produced the same deviation value of 0.0007 mm.
References
[1] S. Zhang, M. Xu, Y. Yang, and Z. Song, “Technological Innovation, Production Efficiency, and Sustainable Development: A Case Study from Shenzhen in China,” Sustainability, vol. 13, no. 19. p. 10827, 2021. doi: https://doi.org/10.3390/su131910827.
[2] I. Palčič and J. Prester, “Impact of Advanced Manufacturing Technologies on Green Innovation,” Sustainability, vol. 12, no. 8. p. 3499, 2020. doi: https://doi.org/10.3390/su12083499.
[3] K. Priyanto, M. H. Palmiyanto, B. H. Priyambodo, and E. Cahyono, “Studi Variasi Temperatur Hardening Terhadap Kekerasan Baja AISI 4340 Melalui Jominy Test,” Teknika, vol. 8, no. 1, pp. 1–8, 2023, doi: https://doi.org/10.52561/teknika.v8i1.205.
[4] J.-K. Hwang, “Effects of Water Jet Height and End Dipping on the Cooling Rate and Hardenability in the Jominy End Quench Test,” Processes, vol. 9, no. 4. p. 607, 2021. doi: https://doi.org/10.3390/pr9040607.
[5] B. Podgornik, M. Sedlaček, B. Žužek, and A. Guštin, “Properties of Tool Steels and Their Importance When Used in a Coated System,” Coatings, vol. 10, no. 3. p. 265, 2020. doi: https://doi.org/10.3390/coatings10030265.
[6] M. A. Chowdhury et al., “Analysis of thin film electrochemical deposition process diffused by carbon tool steels,” Results Chem., vol. 5, p. 100878, 2023, doi: https://doi.org/10.1016/j.rechem.2023.100878.
[7] P. Landgraf, P. Birnbaum, E. Meza-García, T. Grund, V. Kräusel, and T. Lampke, “Jominy End Quench Test of Martensitic Stainless Steel X30Cr13,” Metals, vol. 11, no. 7. p. 1071, 2021. doi: https://doi.org/10.3390/met11071071.
[8] A. Novendra, Refdinal, and S. K. Le, “Hardness Analysis of Stone Breaker Chisel Made of Medium Carbon Steel as a Result of Hardening Using Water Cooling Media,” Teknomekanik, vol. 3, no. 1, pp. 22–27, 2020, doi: https://doi.org/10.24036/tm.v3i1.5172.
[9] L. Allen, A. Gill, A. Smith, D. Hill, P. Z. Moghadam, and J. Cordiner, “Development of a machine learning framework to determine optimal alloy composition based on steel hardenability prediction,” Digit. Chem. Eng., vol. 9, p. 100118, 2023, doi: https://doi.org/10.1016/j.dche.2023.100118.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Muhamad Supena, Nur Rohmat, Abdul Choliq

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
