Rancang Bangun Mesin Penyemprotan Cat Otomatis menggunakan SCADA (Supervisory Control and Data Acquisition) dan PLC (Programmable Logic Control)
Keywords:
Mesin Penyemprotan Cat Otomatis, PLC, SCADA, HMI, Produktivitas, Konsumsi Listrik, Analisis BiayaAbstract
Penelitian ini bertujuan merancang dan membangun mesin penyemprotan cat otomatis berbasis Supervisory Control and Data Acquisition (SCADA) dan Programmable Logic Controller (PLC) untuk meningkatkan produktivitas serta efisiensi biaya proses pengecatan. Tahapan penelitian meliputi perancangan kerangka, perakitan sistem mekanik–pneumatik–elektrik, pemrograman PLC menggunakan CX-Programmer, perancangan antarmuka operasi otomatis dan manual pada NB-Designer yang diunggah ke Human Machine Interface (HMI), serta integrasi dan simulasi melalui SCADA. Pengujian dilakukan sebanyak 30 kali percobaan dengan interval 5 menit untuk mengukur keluaran media pengecatan dan kebutuhan arus listrik. Hasil menunjukkan mesin otomatis menghasilkan 4 media setiap 5 menit (120 media/150 menit) dan setara luas pengecatan 487.526,4 cm² per hari (8 jam), lebih tinggi dibandingkan metode konvensional sebesar 176.148 cm² per hari. Rata-rata arus listrik mesin sebesar 3,25 A pada tegangan 220 V dengan konsumsi energi 0,715 kWh per jam. Biaya listrik mesin otomatis sebesar Rp2.402,4 per hari (Rp72.072 per bulan), sedangkan biaya operasional pengecatan konvensional (upah dan cat) mencapai Rp2.683.333,3 per hari (Rp80.499.999 per bulan). Biaya pembuatan mesin otomatis sebesar Rp27.500.000, sementara peralatan konvensional sebesar Rp1.700.000. Temuan ini menunjukkan sistem otomasi berbasis PLC–HMI–SCADA berpotensi meningkatkan produktivitas dan menekan biaya operasional pengecatan secara signifikan.
Abstract This study aims to design and develop an automatic paint spraying machine based on Supervisory Control and Data Acquisition (SCADA) and a Programmable Logic Controller (PLC) to improve productivity and operational cost efficiency in painting processes. The research stages included frame design, mechanical–pneumatic–electrical assembly, PLC programming using CX-Programmer, development of automatic and manual operation interfaces in NB-Designer deployed to a Human Machine Interface (HMI), and system integration and simulation via SCADA. Performance testing was conducted in 30 trials with 5-minute intervals to evaluate painted media output and electrical current demand. The results indicate that the automated system produced 4 media per 5 minutes (120 media/150 minutes) and achieved an equivalent painted area of 487,526.4 cm² per day (8 hours), exceeding the conventional method which reached 176,148 cm² per day. The machine required an average current of 3.25 A at 220 V, corresponding to an energy consumption of 0.715 kWh per hour. The daily electricity cost was Rp2,402.4 (Rp72,072 per month), whereas the conventional method (labor and paint costs) reached Rp2,683,333.3 per day (Rp80,499,999 per month). The initial fabrication cost of the automated machine was Rp27,500,000, while conventional equipment cost Rp1,700,000. These findings suggest that PLC–HMI–SCADA-based automation can substantially increase painting productivity and reduce operating costs.
References
[1] H. A. Gabbar and M. Idrees, “ARSIP: Automated Robotic System for Industrial Painting,” Technologies, vol. 12, no. 2. p. 27, 2024. doi: https://doi.org/10.3390/technologies12020027.
[2] Q. Ma, Q. Yang, J. Zhang, F. Ren, C. Xia, and F. Chen, “Anti-corrosion properties of bio-inspired surfaces: a systematic review of recent research developments,” Mater. Adv., vol. 5, pp. 2689–2718, 2024, doi: https://doi.org/10.1039/D3MA01058A.
[3] M. K. Shin, H. Qian, J.-E. Lee, L. Sentis, and S. I. Maberti, “Estimating exposures from spray products using robotic simulations,” Ann. Work Expo. Heal., vol. 67, no. 8, pp. 979–989, Oct. 2023, doi: https://doi.org/10.1093/annweh/wxad049.
[4] E. Heinold, M. Funk, S. Niehaus, P. H. Rosen, and S. Wischniewski, “OSH related risks and opportunities for industrial human-robot interaction: results from literature and practice,” Front. Robot. AI, vol. 10, p. 1277360, 2023, doi: https://doi.org/10.3389/frobt.2023.1277360.
[5] B. Herdiana, E. B. Setiawan, and U. Sartoyo, “Tinjauan Komprehensif Evolusi, Aplikasi, dan Tren Masa Depan Programmable Logic Controllers (A Comprehensive Review of the Evolution, Applications, and Future Trends of Programmable Logic Controllers),” Telekontran J. Ilm. Telekomun. Kendali dan Elektron. Terap., vol. 11, no. 2, pp. 102–116, 2023, doi: https://doi.org/10.34010/telekontran.v11i2.12896.
[6] K.-C. Yao, C.-L. Lin, and C.-H. Pan, “Industrial Sustainable Development: The Development Trend of Programmable Logic Controller Technology,” Sustainability, vol. 16, no. 14. p. 6230, 2024. doi: https://doi.org/10.3390/su16146230.
[7] X. Xie and Y. Wang, “Research on Distribution Properties of Coating Film Thickness from Air Spraying Gun-Based on Numerical Simulation,” Coatings, vol. 9, no. 11. p. 721, 2019. doi: https://doi.org/10.3390/coatings9110721.
[8] N. Almansoori, S. Aldulaijan, S. Althani, N. M. Hassan, M. Ndiaye, and M. Awad, “Manual spray painting process optimization using Taguchi robust design,” Int. J. Qual. Reliab. Manag., vol. 38, no. 1, pp. 46–67, Mar. 2020, doi: https://doi.org/10.1108/IJQRM-07-2019-0248.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Akmal Zaid, Nur Rohmat

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
