Analisis Pengaruh Variasi Temperatur Sintering terhadap Sifat Mekanik Paduan Fe–Al dan SiO₂ sebagai Bahan Alternatif Busi Motor
Keywords:
Fe–Al–SiO₂, Temperatur Sintering, Uji Kekerasan Rockwell, SEM–EDS, Metalurgi SerbukAbstract
Metalurgi serbuk merupakan salah satu metode alternatif dalam pengembangan material paduan karena mampu menghasilkan material dengan struktur mikro yang lebih homogen serta sifat mekanik yang terkendali. Penelitian ini bertujuan untuk menganalisis pengaruh variasi temperatur sintering terhadap sifat mekanik dan karakteristik struktur mikro paduan Fe–Al–SiO₂ sebagai bahan alternatif busi motor. Material paduan disiapkan dengan komposisi Fe 50%, Al 40%, dan SiO₂ 10% melalui proses High Energy Milling (HEM) selama 3 jam. Serbuk hasil milling kemudian dikompaksi dan disintering pada variasi suhu 300°C, 400°C, dan 450°C. Pengujian kekerasan dilakukan menggunakan metode Rockwell skala HRA dengan beban mayor 60 kg dan indentor kerucut intan, sedangkan karakterisasi struktur mikro dan komposisi unsur dilakukan menggunakan Scanning Electron Microscopy–Energy Dispersive Spectroscopy (SEM–EDS). Hasil penelitian menunjukkan bahwa peningkatan temperatur sintering cenderung meningkatkan nilai kekerasan material, dengan nilai kekerasan berturut-turut sebesar 51,66 HRA pada suhu 300°C, 52,00 HRA pada suhu 400°C, dan 52,66 HRA pada suhu 450°C. Meskipun demikian, peningkatan kekerasan yang terjadi relatif tidak signifikan. Hasil analisis SEM–EDS menunjukkan bahwa material belum memiliki homogenitas yang optimal, ditandai dengan distribusi unsur Fe, Al, Si, dan O yang tidak merata pada area mapping yang berbeda. Kandungan oksigen yang relatif tinggi pada seluruh sampel mengindikasikan terjadinya oksidasi selama proses sintering. Hal ini menunjukkan bahwa suhu sintering yang digunakan masih belum cukup untuk menghasilkan proses difusi dan peleburan material secara optimal.
Abstract Powder metallurgy is an alternative processing route for alloy development due to its ability to produce materials with controlled mechanical properties and relatively homogeneous microstructures. This study aims to investigate the effect of sintering temperature variations on the mechanical properties and microstructural characteristics of Fe–Al–SiO₂ alloys as an alternative material for spark plug applications. The alloy was prepared with a composition of 50% Fe, 40% Al, and 10% SiO₂ using a High Energy Milling (HEM) process for 3 hours. The milled powders were compacted and sintered at temperatures of 300°C, 400°C, and 450°C. Hardness testing was conducted using the Rockwell method (HRA scale) with a major load of 60 kg and a diamond cone indenter, while microstructural characterization and elemental composition analysis were performed using Scanning Electron Microscopy–Energy Dispersive Spectroscopy (SEM–EDS). The results indicate that increasing the sintering temperature tends to increase the hardness of the material, with hardness values of 51.66 HRA at 300°C, 52.00 HRA at 400°C, and 52.66 HRA at 450°C. However, the increase in hardness is relatively insignificant within the investigated temperature range. The SEM–EDS analysis reveals that the material is not yet fully homogeneous, as indicated by the uneven distribution of Fe, Al, Si, and O elements across different mapping areas. The relatively high oxygen content in all samples suggests the occurrence of oxidation during the sintering process. These findings indicate that the applied sintering temperatures are still insufficient to promote optimal diffusion and melting of the constituent elements.
References
[1] B. Mallikarjuna and E. W. Reutzel, “Reclamation of intermetallic titanium aluminide aero-engine components using directed energy deposition technology,” Manuf. Rev., vol. 9, p. 27, 2022, doi: https://doi.org/10.1051/mfreview/2022024.
[2] C. Wang et al., “Rapid Synthesis and Sintering of Metals from Powders,” Adv. Sci., vol. 8, no. 12, p. 2004229, Jun. 2021, doi: https://doi.org/10.1002/advs.202004229.
[3] M. Kumaravel et al., “Elucidating the challenges in the development and deployment of refractory complex concentrated alloys for additive manufacturing,” Addit. Manuf., vol. 89, p. 104286, 2024, doi: https://doi.org/10.1016/j.addma.2024.104286.
[4] Z. Wang, Y. Tan, and N. Li, “Powder metallurgy of titanium alloys: A brief review,” J. Alloys Compd., vol. 965, p. 171030, 2023, doi: https://doi.org/10.1016/j.jallcom.2023.171030.
[5] P. Novak, K. Nova, T. Vanka, and F. Prusa, “High-temperature Behaviour of New Fe-Al-Si Alloy Produced by Powder Metallurgy,” Manuf. Technol. J., vol. 18, no. 2, pp. 299–302, 2018, doi: https://doi.org/10.21062/ujep/95.2018/a/1213-2489/MT/18/2/299.
[6] M. Kopec, S. Jóźwiak, and Z. Kowalewski, “Fe-Al based composite reinforced with ultra-fine Al2O3 oxides for high temperature applications,” J. Theor. Appl. Mech., vol. 59, no. 3, pp. 509–513, 2021, doi: https://doi.org/10.15632/jtam-pl/138322.
[7] G.-S. Ham, R. Kreethi, H. Kim, S. Yoon, and K.-A. Lee, “Effects of different HVOF thermal sprayed cermet coatings on tensile and fatigue properties of AISI 1045 steel,” J. Mater. Res. Technol., vol. 15, pp. 6647–6658, 2021, doi: https://doi.org/10.1016/j.jmrt.2021.11.102.
[8] J. Wang, S. Srivatsa, Z. Wu, and Z. Huang, “Modeling of Metal Powder Densification under Hot Isostatic Pressing,” Materials, vol. 17, no. 8. p. 1933, 2024. doi: https://doi.org/10.3390/ma17081933.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Muthia Zahra, Abdul Choliq

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
