Journal of Technical Engineering:

Efek Penambahan Fe₃Mn₇ Terhadap Sifat Fisis dan Mekanik α-Fe₂O₃

Eko Arief Setiadi^{1,a)}, Wini Rahmawati^{2,b)}, Pulung Karo Karo², Muhammad Yunus¹, dan Perdamean Sebayang¹

¹Pusat Penelitian Fisika, Lembaga Ilmu Pengetahuan Indonesia (LIPI), Kawasan Puspiptek Gd 440-442, Serpong, Tangerang Selatan, Banten

²Jurusan Fisika Universitas Negeri Lampung, Jl. Prof. Dr. Soemantri Brojonegoro, Bandar Lampung, Lampung

E-mail: ^{a)}eko.arief.setiadi@lipi.go.id, ^{b)}akhmadmuiz@gmail.com

Masuk : 23 Februari 2017 Direvisi : 1 Maret 2017 Disetujui : 10 April 2017

Abstrak: Preparasi dan karakterisasi pellet α -Fe₂O₃ dengan penambahan 0, 2, 5 dan 10 %wt. Fe₃Mn₇ berbasis pada material alam telah berhasil dilakukan. Proses pencampuran serbuk α -Fe₂O₃ dan Fe₃Mn₇ dilakukan dengan menggunakan HEM. Kemudian campuran serbuk dikasinasi pada suhu 1000 °C, dikompaksi pada 69 Pa hingga menjadi pellet dan disinter pada suhu 1000 °C. Karakterisasi XRD menunjukkan adanya fasa dominan α -Fe₂O₃ dan fasa baru MnO₂ dan Fe₃O₄. Densitas dan kekerasan sampel meningkat secara linier seiring dengan kenaikan komposisi Fe₃Mn₇ yang ditambahkan. Sampel optimum diperoleh pada sampel α -Fe₂O₃/10 %wt. Fe₃Mn₇ dengan nilai *bulk density* dan kekerasan masing-masing 4,98 g/cm³ and 994,94 HV. Sampel ini termasuk dalam klasifikasi hard magnet dengan nilai magnetisasi saturasi, remanen dan koersivitas masing-masing sebesar 24,0 emu/g, 10,3 emu/g dan 571,8 Oe.

Kata kunci: α-Fe₂O₃, Fe₃Mn₇, densitas, kekerasan, sifat magnetik

Abstract: Preparation and characterization of α -Fe₂O₃ pellet with the addition of 0, 2, 5 and 10 %wt. Fe₃Mn₇ based on natural materials have been successfully carried out. The process of mixing powder of α -Fe₂O₃ and Fe₃Mn₇ was performed using HEM. Then, the mix powders were calcined at temperature of 1000 °C. After that, the powders were compacted at 69 Pa into pellet and sintered at temperature of 1000 °C. Characterization of XRD shows that the samples have major phase of α -Fe₂O₃ and new phases of MnO₂ and Fe₃O₄. The density and hardness samples increase linearly with increasing of Fe₃Mn₇ composition. The optimum sample with α -Fe₂O₃/10 %wt. Fe₃Mn₇ has bulk density and hardness value of 4.98 g/cm³ and 994.94 HV respectively. This sample is classified as semi-hard magnet with magnetization saturation, remanence and coercivity value of 24.0 emu/g, 10.3 emu/g dan 571.8 Oe respectively.

Keywords: a-Fe2O3, Fe3Mn7, density, hardness, magnetic properties

PENDAHULUAN

Material hematit (α -Fe₂O₃) merupakan oksida yang banyak digunakan dalam berbagai aplikasi. Beberapa aplikasi diantaranya seperti pada sensor gas, agen katalis, baterai lithium ion [1], *photoelectrochemical* [2], perangkat biomedis, pigmen, [3] dan lainnya. Beberapa metode digunakan untuk preparasi α -Fe₂O₃ diantaranya metode sol gel, *force hydrolysis*, mikroemulsi, presipitasi, *direct oxidation*, thermal decomposisi, sonokimia, hidrotermal, solvotermal, elektrokimia dan sebagainya [4]. Dalam penelitian ini akan dilakukan pembuatan dan karakterisasi pellet α -Fe₂O₃ dengan penambahan *Iron Manganese* (Fe₃Mn₇) dengan metode metalurgi serbuk yang dilanjutkan dengan kalsinasi, kompaksi dan sintering. Metode ini dipilih karena mudah dan dapat dilakukan untuk skala besar. Dalam penelitian ini juga akan dilakukan analisa pengaruh penambahan Fe₃Mn₇ pada sifat fisis yang meliputi struktur fasa, densitas dan sifat magnetiknya, serta analisa sifat mekanik yaitu kekerasan sampel. Dengan penambahan Fe₃Mn₇ ini diharapkan akan dapat meningkatkan densitas, kekerasan dan sifat magnetiknya.

METODOLOGI

Bahan dasar Fe₃Mn₇ yang dipakai dalam penelitian ini berbentuk bongkahan dari alam yang dihaluskan menjadi serbuk sampai lolos ayakan 200 mesh. Proses selanjutnya yaitu proses *mixing* bahan utama α -Fe₂O₃ teknis dan penambahan aditif Fe₃Mn₇ dengan cara dimilling menggunakan *High Energi Milling* (HEM) *shaker mill* PPF selama 1 jam. Penambahan Fe₃Mn₇ divariasi untuk empat sampel berbeda dengan variabel komposisi Fe₃Mn₇ sebanyak 0, 2, 5, dan 10 % wt. yang nantinya masing-masing akan disebut sebagai sampe FM0, FM2, FM5 dan FM10. Hasil mixing tersebut dikarakterisasi true density dengan menggunakan piknometer. Selanjutnya keempat sampel tersebut dikalsinasi pada temperatur 1000°C. Hasil kalsinasi tersebut dikompaksi diperoleh sampel berupa pellet. Pellet tersebut disintering pada temperatur 1000°C dengan lama penahanan 1 jam. Pellet kemudian diukur *bulk density* dengan menggunakan prinsip Archimedes. Selain itu sampel juga dikarakterisasi menggunakan *X-ray diffraction* (XRD - Rigaku SmartLab dengan panjang gelombang Cuka 1,5406), *Microhardness Tester* (MHT – Leco 100AT) dan *Vibrating Sampel Magnetometer* (VSM – Electromagnetic VSM 250).

HASIL DAN PEMBAHASAN

Hasil pengukuran *true density* dari serbuk hasil milling ditunjukkan oleh Gambar 1. Pada Gambar 1 menunjukkan adanya hubungan yang linier antara penambahan komposisi Fe₃Mn₇ terhadap nilai *true density*. Semakin banyak Fe₃Mn₇ yang ditambahkan terhadap serbuk α -Fe₂O₃ maka nilai *true density* akan semakin besar. Hal ini dikarenakan Fe₃Mn₇ satndart memiliki *true density* lebih tinggi dibandingkan *true density* serbuk α -Fe₂O₃. Fe₃Mn₇ standart memiliki densitas sebesar 7,431 g/cm³ sedangkan α -Fe₂O₃ standar memiliki densitas sebesar 5.258 g/cm³ [5]. Pada sampel tanpa penambahan Fe₃Mn₇ diperoleh *true density* sebesar 3,12 g/cm³ dan pada penambahan 10 % wt. Fe₃Mn₇ true density meningkat menjadi 5,11 g/cm³.

Gambar 1. Hubungan true density terhadap komposisi Fe₃Mn₇.

Pada Gambar 2 merupakan hasil pengukuran *bulk density* sampel setelah dikompaksi dalam bentuk pellet dan kemudian disinter pada suhu 1000 °C.

Gambar 2. Hubungan bulk density terhadap komposisi Fe3Mn7.

Pada Gambar 2 menunjukkan nilai *bulk density* yang diperoleh dari penambahan 0, 2, 5 dan 10 % wt. Fe₃Mn₇ berkisar 4,52-4,98 g/cm³ terjadi pola yang sama antara *bulk density* dengan nilai *true density* sampel. Semakin tinggi komposisi Fe₃Mn₇ yang ditambahkan maka nilai *bulk density* juga semakin naik. Besarnya *bulk density* sangat dipengaruhi oleh suhu sintering dan komposisi. Pada proses sintering terjadi densifikasi sehingga sampel akan semakin padat dengan rongga akan semakin berkurang [6]. Seperti pada nilai *true density*, bahwa nilai densitas Fe₃Mn₇ lebih tinggi dibanding α -Fe₂O₃ sehingga kerapatan sampel meningkat dengan makin banyaknya Fe₃Mn₇ yang ditambahkan.

Hasil analisa fasa sampel dengan menggunakan XRD ditunjukkan oleh Gambar 3. Pada pola difraksi (a) merupakan bahan dasar Fe₃Mn₇, (b) merupakan bahan dasar α-Fe₂O₃, sedangkan (c) pola difraksi sampel Fm10 yang telah melalui proses kalsinasi 1000 °C, dicetak dalam bentuk pellet pada tekanan 69 Pa dan disinter pada 1000 °C. Sampel Fm10 dipilih karena sampel ini memiliki densitas yang paling baik dari sampel lainnya.

Gambar 3. Pola difraksi (a) Fe_3Mn_7 , (b) α -Fe₂O₃, dan (c) sampel α -Fe₂O₃ dengan 10% wt. Fe₃Mn₇.

Pada Gambar 3 (a) hasil analisa XRD menunjukkan adanya fasa dominan Fe₃Mn₇ dengan struktur kubik dan parameter kisi a = b = c = 3,668 Å. Sedangkan pada pola (b) menunjukkan pola puncak-puncak difraksi dari fasa dominan rhombohedral α -Fe₂O₃ dengan parameter kisi a = b = 5,032 Å dan c = 13,733 Å. Sedangkan pada pola difraksi (c) merupakan pola difraksi dari pellet FM10. Dari pola difraksi menunjukkan adanya tiga fasa, dimana fasa dominan adalah fasa α -Fe₂O₃ dan adanya dua fasa baru MnO₂ dan fasa Fe₃O₄. Dua fasa baru ini muncul akibat adanya penambahan Fe₃Mn₇ yang ditambahkan dan telah mengalami perubahan fasa akibat perlakuan termal. Fasa MnO₂ merupakan oksida mangan dengan struktur oktahedral dengan parameter kisi a = 9,322 Å, b = 4,453Å dan c = 2,848Å, sedangkan Fe₃O₄ merupakan fasa dengan struktur kubik dengan parameter kisi a = b = c = 8,39Å [9].

Pengujian kekerasan sampel dengan metode Vickers pada load 300 gF dan waktu penahanan 13 detik. Hasil pengujian kekerasan ditunjukkan pada Gambar 4.

Gambar 4. Hubungan kekerasan dengan komposisi Fe3Mn7

Pada Gambar 4 menunjukkan bahwa semakin banyaknya komposisi Fe₃Mn₇ yang ditambahkan maka nilai kekerasannya juga semakin meningkat. Hal ini berkaitan dengan nilai *bulk density* sampel. Untuk material sejenis semakin tinggi *bulk density* sampel maka nilai kekerasannya akan semakin besar [7]. Semakin tinggi penambahan Fe₃Mn₇ maka nilai densitas semakin besar, kerapatan partikel pada pellet semakin meningkat, sehingga nilai kekerasan semakin tinggi.

Hasil pengujian sifat magnet menggunakan Vibrating Sample Magnetometer (VSM), seperti diperlihatkan pada Gambar 5 dan Tabel 1. Kurva histeresis Gambar 5 (a) merupakan kurva dari bahan dasar serbuk α -Fe₂O₃ tanpa penambahan Fe₃Mn₇ dan belum melalui proses kalsinasi, kompaksi dan sintering sedangkan kurva (b) merupakan kurva sampel pellet FM10 yang merupakan sampel dengan nilai *bulk density* dan kekerasan paling tinggi. Dari kurva histeresis dapat dilihat nilai magnetisasi saturasi (σ_s), magnetisasi remanensi (σ_r) dan medan koersivitas (*jH*_c) sebagai akibat perubahan medan magnet luar.

Gambar 4. Kurva histeresis (a) bahan baku α -Fe₂O₃ dan (b) sampel α -Fe₂O₃/10% wt. Fe₃Mn₇.

) (emu/g)	(Oe)
0,1	372,2
10,3	571,8
)	0,1 10,3

Tabel 1. Hasil uji VSM sampel setelah heat treatment pada suhu 1000 °C.

Berdasarkan Gambar 5 dan Tabel 1 dapat dilihat bahwa bahan dasar α -Fe₂O₃ merupakan bahan dengan nilai magnetisasi saturasi, magnetisasi remanensi, dan medan koersivitas masing-masing yaitu 0,7 emu/g, 0,1 emu/g, dan 372,2 Oe. Hematite adalah antiferomagnetik dibawah suhu Néel T_N = 955 K. Pada suhu Morin, T_M = 260 K, terjadi transisi fase magnetik dimana sumbu antiferomagnetik mengalami pergeseran [8], sehingga bahan ini akan memiliki respon yang sangat kecil pada medan magnet. Sedangkan pada sampel FM10 diperoleh nilai magnetisasi saturasi, magnetisasi remanensi, dan medan koersivitas masing-masing yaitu 24,0 emu/g, 10,3 emu/g, dan 571,7 Oe. Nilai ini sangat jauh lebih besar dibanding nilai bahan dasar α -Fe₂O₃. Hal ini terjadi karena adanya penambahan Fe₃Mn₇ menyebabkan adanya dua fasa baru MnO₂ dan Fe₃O₄ seperti yang terlihat dari analisa XRD. Meski fasa dominan pada sampel pellet FM10 adalah α -Fe₂O₃ yang bersifat antiferomagnetik, namun kemunculan MnO₂ dan Fe₃O₃ ternyata merubah sifat magnet cukup signifikan. Fe₃O₄ yang merupakan oksida besi yang yang tergolong feromagnetik [9]. Sifat magnetik suatu material dipengaruhi beberapa faktor seperti derajat kristalinitas, ukuran partikel, dan adanya pengaruh fasa sekunder [10]. Berdasarkan kurva hysteresis, sampel pellet FM10 merupakan sampel yang bersifat feromagnetik dan termasuk dalam klasifikasi *semi-hard magnet*. Bahan *semi-hard* magnet memiliki koersivitas di antara 10-400 kA/m atau 125-5026 Oe yang sering digunakan sebagai media *recording* [11].

KESIMPULAN

Telah berhasil dibuat pellet dari bahan hematit (α -Fe₂O₃) dengan penambahan 0, 2, 5 dan 10 % wt. Fe₃Mn₇ dengan metode metalurgi serbuk, kalsinasi pada suhu 1000 °C, kompaksi 69 Pa dan sintering 1000 °C. Hasil analisa menunjukkan sampel pellet dengan penambahan 10 % wt. Fe₃Mn₇ memiliki fasa dominan α -Fe₂O₃ dan

dua fasa baru MnO_2 dan Fe_3O_4 . Hasil pengukuran *true density*, *bulk density*, dan kekerasan menunjukkan semakin tinggi komposisi Fe_3Mn_7 yang ditambahkan pada sampel. Dalam penelitian ini, nilai sampel optimum diperoleh pada sampel α - Fe_2O_3 dengan penambahan 10 % wt. Fe_3Mn_7 dengan nilai *bulk density* sebesar 4,52 g/cm³ dan kekerasan sebesar 994,94 HV. Sampel ini tergolong sebagai sampel *semi-hard* magnet dengan nilai magnetisasi saturasi, remanen, dan koersivitas sebesar 24,0 emu/g, 10,3 emu/g, dan 571,8 Oe.

DAFTAR PUSTAKA

- X. Zhang, Y. Niu, Y. Li, X. Hou, Y. Wang, R. Bai, dan J. Zao, "Synthesis, optical, and magnetic properties of α-Fe₂O₃ nanoparticles with various shapes," *Materials Letters*, vol. 99, hal. 111-114, 2013.
- [2]. M. Chirita dan T. Grozescu, "Fe₂O₃-nanoparticles, physical properties and their photochemical and photoelectrochemical application," *Chem. Bull. Polithecnica univ Timisoara*, vol. 54, no. 68, hal. 1-8, 2009.
- [3]. I. A. Kadir dan A.B. Aliyu, "Some wet routes for synthesis of hematit nanostructures," *African Journal of Pure and Applied Chemistry*, vol. 7, no.3, hal. 114-121, 2013.
- [4]. S. Bagheri, K.G. Candrappa, dan S. B. A. Hamid, "Generation of hematite nanoparticles via sol gel method," *Research Journal Chemical Sciences*, vol. 3, no. 7, hal. 62-68, 2013.
- [5]. H. Jacobsen, Magnetic properties of nano-scale hematite: theory, experiments and simulations, Thesis, Copenhagen: University of Copenhagen, Denmark, 2014.
- [6]. G. Dutta dan D. Bose, "Effect of sintering temperature on density, porosity and hardness of a powder metallurgy component," *International Journal of Emerging Technology and Advanced Engineering*, vol. 2, hal. 121-123, 2012.
- [7]. A. K. Biruu, K. Shiva, dan S. G. S David, "Study on density and hardness of reinforced zinc oxide," *Proceedings 2 Materials Today*, hal. 4402- 4406, 2015.
- [8]. Z. D. Pozun dan G. Henkelman, "Hybrid density functional theory band structure engineering in hematite," *The Journal of Chemical Physics*, vol. 134, hal. 224706, 2011.
- [9]. E. A. Setiadi, P. Sebayang, M. Ginting, A. Y. Sari, C. Kurniawan, C. S. Saragih, dan P. Simamora, "The synthesization of Fe₃O₄ magnetic nanoparticles based on natural iron sand by co-precipitation method for the used of the adsorption of Cu and Pb ions," *Journal of Physics: Conference Series*, vol. 776, 012020, 2016.
- [10]. E. A. Setiadi, C. Kurniawan, P. Sebayang, dan M. Ginting, "Microstructures, physical and magnic properties of BaFe₁₂O₁₉ permanent magnets with the addition of Al₂O₃-MnO", *Journal of Physics: Conf. Series*, Vol. 817, 012054, 2017.
- [11]. J. M. D. Coey, Magnetism and Magnetic Materials, New York: Cambridge University Press, 2010.