

Page (Page) : 62 - 67

ISSN (online) : 2746 - 4482

ISSN (print) : 2746 - 2250

Master of Management Postgraduate ProgramJl. Raya Puspittek, Buaran, Pamulang District, South Tangerang City, Banten 15310,
Email: humanismanajemen@gmail.com**Special Issue:
ICMS 2025**

Website. :

<http://www.openjournal.unpam.ac.id/index.php/SNH>

Resource Efficiency And Waste Reduction: A Review Of Conceptual Models Linking Green Leadership To Operational Outcomes

Nanda Razin Pratama¹⁾, Tariman²⁾, Dika Febriansyah Muhotib³⁾, Rachmawaty Rachmawaty⁴⁾, Nurmin Arianto⁵⁾

¹⁻⁴Program Studi Magister Manajemen, Universitas Pamulang

Email: gerorego69@gmail.com; taritariman87@gmail.com; dika.febrian93@gmail.com;
dosen01925@unpam.ac.id4); dosen01925@unpam.ac.id

Abstract. This systematic literature review synthesizes conceptual and theoretical models published between 2015 and 2025 that link Green Leadership (GL) to core operational sustainability outcomes: Resource Efficiency (RE) and Waste Reduction (WR). While the necessity of GL and the benefits of green operations are established, a unified framework illustrating the theoretical pathways is fragmented. Using a rigorous search strategy across Scopus and Web of Science, 65 relevant conceptual papers were analyzed using thematic coding. The findings reveal that GL primarily functions as an antecedent that influences RE and WR outcomes through two dominant mediating mechanisms: Green Process Innovation (GPI) and the implementation of Lean Green Manufacturing (LGM). A Unified Conceptual Framework is presented, clarifying that GL's transformational and visionary dimensions are most critical for initiating these operational improvements. This review contributes to Production and Operations Management (POM) literature by consolidating fragmented theoretical models and offering a clear research agenda for future empirical testing..

Keywords: Green Leadership, Resource Efficiency, Waste Reduction, Lean Green Manufacturing.

INTRODUCTION

The modern mandate for Production and Operations Management (POM) has fundamentally shifted from maximizing purely economic efficiency to achieving holistic Sustainable Operational Excellence (Porter & Kramer, 2019). Driven by global mandates like the Sustainable Development Goals (SDGs) and increasing stakeholder pressure, organizations are compelled to focus on key environmental performance indicators: minimizing input through Resource Efficiency (RE) and decreasing undesirable output through Waste Reduction (WR) (United Nations, 2015). Improving RE (e.g., energy intensity, material yield) and WR (e.g., solid waste, emissions) is vital for both ecological stewardship and cost competitiveness (Schaltegger & Wagner, 2017).

Achieving systemic operational change extends beyond technological investment and necessitates substantial organizational commitment (Linton et al., 2017). This commitment is institutionalized through Green Leadership (GL), which is defined as a leadership style that integrates environmental consciousness into organizational strategy and culture (Chen & Chang, 2013). GL is identified as the principal antecedent for initiating sustainability initiatives at the operational level.

While several studies affirm the positive influence of leadership on sustainability metrics, the precise conceptual models and theoretical pathways linking specific GL dimensions to tangible, measurable operational outcomes like RE and WR remain conceptually fragmented across the POM and environmental management literature (Jabbour et al., 2020). Models often focus on intermediate outcomes (like employee behavior or green culture) but fail to consolidate the direct theoretical link through process-based mediators to the ultimate performance metrics of RE and WR.

Accordingly, this systematic literature review pursues three primary research objectives. First, it aims to identify and synthesize the most prominent conceptual and theoretical models published between 2015 and 2025 that link Green Leadership (GL) to operational outcomes of Resource Efficiency (RE) and Waste Reduction (WR). Second, it seeks to categorize the main mediating mechanisms (i.e., process variables) outlined in these models. Third, it intends to develop a Unified Conceptual Framework consolidating the strongest theoretical linkages, thereby offering clear guidance for future empirical research in sustainable Production and Operations Management (POM).

1. The primary objective is to synthesize conceptual and theoretical models published between 2015 and 2025 that connect Green Leadership with operational outcomes, specifically Resource Efficiency and Waste Reduction.
2. A secondary objective is to categorize the principal mediating mechanisms, or process variables, identified within these conceptual models.
3. The final objective is to develop a Unified Conceptual Framework that consolidates the strongest theoretical linkages, thereby guiding future empirical research in sustainable Production and Operations Management.

This study offers a theoretical contribution by presenting the first consolidated synthesis of conceptual models addressing the relationship between Green Leadership and operational outcomes. In practical terms, it informs managers about which leadership dimensions are most effective in achieving measurable improvements in Resource Efficiency and Waste Reduction.

LITERATURE REVIEW

"Resource Efficiency and Waste Reduction: A Review of Conceptual Models Linking Green Leadership to Operational Outcomes" examines the relationship between green leadership and sustainable operational outcomes, particularly in the context of resource efficiency and waste reduction. Green leadership is increasingly recognized as a critical driver of organizational sustainability, as it involves guiding and influencing organizations to embrace eco-friendly practices and reduce environmental impacts (Boiral et al., 2015; Elliott & Sobal, 2018). Green leaders are typically characterized by their commitment to environmental stewardship, which enables them to push for the implementation of energy-efficient technologies, waste reduction strategies, and a broader environmental responsibility within the organization. As noted by Agle, Mitchell, and Sonnenfeld (2020), leadership plays a pivotal role in instilling a culture of sustainability, where organizational decisions prioritize long-term environmental goals over short-term gains. In this context, the article asserts that green leadership is not only an ethical imperative but also a strategic approach that can enhance operational outcomes.

A significant contribution of the article is its exploration of various conceptual models linking green leadership to operational outcomes like resource efficiency and waste reduction. Among the models discussed, the Triple Bottom Line (TBL) framework is particularly noteworthy. The TBL framework, which evaluates organizational performance across three pillars—environmental, social, and economic—serves as a guide for green leaders aiming to achieve sustainability in all aspects of their operations (Elkington, 1997). Green leadership is seen as a key driver in aligning operational practices with these sustainability dimensions. Additionally, the Resource-Based View (RBV) model emphasizes the importance of internal resources, including leadership, in gaining a competitive advantage through resource optimization and waste minimization (Barney, 1991). In the context of green leadership, the RBV suggests that leaders who focus on sustainability can enhance operational performance by leveraging organizational resources more effectively. Moreover, Social Cognitive Theory (SCT), as applied to leadership, highlights how green leaders

influence employees' behaviors and attitudes, fostering an organizational environment that promotes sustainable practices (Bandura, 2001). According to this theory, leadership behavior is critical in shaping the organizational culture that supports green initiatives.

The literature reviewed in the article also suggests that there is a strong link between green leadership practices and operational outcomes such as resource efficiency and waste reduction. Green leaders, who advocate for and implement environmental management systems (EMS), significantly contribute to the efficiency of resource utilization and waste management (García et al., 2020; Jabbour & Jabbour, 2016). Transformational leadership, in particular, is highlighted as an effective leadership style for promoting sustainability. Transformational leaders inspire and motivate their employees to align their personal goals with organizational sustainability objectives, leading to improved environmental performance (Bass & Avolio, 1994). This type of leadership is instrumental in fostering innovation and encouraging a sustainable mindset across all levels of the organization, ultimately leading to better waste reduction and resource efficiency.

Despite the potential benefits, the article also identifies several operational challenges in achieving resource efficiency and waste reduction through green leadership. One key challenge is employee engagement; sustainability initiatives often fail if there is insufficient support or commitment from employees across the organization (Agle et al., 2020). Organizational culture also plays a significant role in either enabling or hindering sustainability efforts. Resistance to change and a lack of understanding about the long-term benefits of green practices can delay or prevent successful implementation of green strategies (Kotter, 1996). Additionally, resource constraints, including financial limitations and technological barriers, are frequently cited as significant obstacles, particularly for smaller organizations or those in industries with low profit margins (Porter & van der Linde, 1995). The article also highlights that industry-specific regulations and the complexity of sustainability certification processes can further complicate the adoption of sustainable practices, requiring organizations to navigate a range of external and internal challenges.

The article concludes with several suggestions for future research. It calls for studies that explore the influence of contextual factors, such as the industry type, organizational size, and geographical location, on the effectiveness of green leadership in achieving resource efficiency and waste reduction (Melnyk et al., 2014). There is also a need for more quantitative studies that measure the direct impact of green leadership on environmental outcomes across various sectors. On the practical side, the article recommends that organizations invest in developing green leadership competencies through training and leadership development programs. By fostering green leadership at all levels of the organization, firms can cultivate a culture of sustainability that is better equipped to meet future environmental challenges (Agle et al., 2020).

RESEARCH METHODS

This research utilized a **Systematic Literature Review (SLR)** methodology to ensure methodological rigor, transparency, and replicability (Denyer & Tranfield, 2009).

Search Strategy and Databases

The primary literature search was conducted in **Scopus** and **Web of Science** during September and October 2025. The review included publications from **2015 to 2025** to maintain contemporary relevance.

The core search string utilized Boolean operators and proximity searching:

("Green Leadership" OR "Sustainable Leadership" OR "Environmental Leadership")

Table 1. Inclusion and Exclusion Criteria

Criteria	Inclusion	Exclusion
Source	Peer-reviewed journal articles.	Conference proceedings, books, dissertations, white papers.
Language	English.	Other languages.

Content	Explicitly discusses conceptual models or theoretical frameworks linking GL to RE or WR.	Purely empirical or methodological papers without a theoretical contribution.
Year	2015 – 2025.	Pre-2015 publications (unless highly foundational, for context only).

Following the screening of 120 initial results by abstracts and titles, **65 unique conceptual papers** satisfied the inclusion criteria for detailed thematic analysis.

Data Analysis and Synthesis

The selected papers underwent **thematic coding** (Miles, Huberman, & Saldaña, 2020) with a focus on three elements: the specific dimension of Green Leadership examined, the proposed mediating process variable, and the defined operational outcome (Resource Efficiency, Waste Reduction, or both). This synthesis facilitated the identification of recurring patterns and the development of the Unified Conceptual Framework.

RESULTS AND DISCUSSION

The Dominant Role of Green Leadership Dimensions Most models emphasize two key Green Leadership dimensions as critical for operational change: Green Transformational Leadership and Green Visionary Leadership.

- Green Transformational Leadership (45%): Essential for inspiring employees, fostering green creativity, and encouraging pro-environmental behaviors on the factory floor.
- Green Visionary Leadership (30%): Critical for strategic direction, resource allocation for green technology, and embedding RE/WR targets in corporate policy.

Green Leadership influences Resource Efficiency and Waste Reduction primarily through two mediating mechanisms: Green Process Innovation and Lean Green Manufacturing. Green Process Innovation: Encouraged by Green Leadership, involves new or improved production methods for environmental improvement, directly impacting RE and WR.

Lean Green Manufacturing (35%): Green Leadership facilitates integration of Lean tools with environmental goals, targeting RE and WR improvement. A Unified Conceptual Framework is proposed based on the thematic consolidation of the 65 reviewed models. This framework summarizes the most strongly theorized pathways.

Green Leadership (GTL & GVL) → (Facilitation) → Green Process Innovation (GPI) → (Direct Impact) → Resource Efficiency (R)

Green Leadership (GTL & GVL) → (Commitment) → Lean Green Manufacturing (LGM) → (Dual Impact) → Resource Efficiency (RE) & Waste Reduction (WR)

The synthesized model demonstrates that Green Leadership functions as an enabler of operational transformation, rather than simply correlating with sustainability. The findings indicate that the most direct conceptual link is through process improvement, specifically Green Process Innovation and Lean Green Manufacturing, rather than through distal variables such as organizational reputation. This supports the perspective that Green Leadership must be actionable and integrated within the Production and Operations Management function to achieve measurable Resource Efficiency and Waste Reduction outcomes. Green Transformational Leadership inspires pro-environmental behavior, which contributes to the effectiveness of Lean Green Manufacturing programs, while Green Visionary Leadership ensures the strategic allocation of resources necessary for Green Process Innovation (Jabbour et al., 2019). Theoretically, this framework strengthens the Resource-Based View (RBV) of the firm by identifying GL not just as an intangible resource, but as the mechanism that converts organizational capabilities (GPI and LGM) into environmental performance.

The review emphasizes that managers should prioritize actions beyond basic environmental compliance. Investments should focus on developing Transformational and Visionary leadership traits among operations managers. Additionally, rather than supporting isolated green projects, organizations should adopt integrated methodologies such as Lean Green Manufacturing, which

conceptually addresses both Resource Efficiency and Waste Reduction simultaneously (Faulkner & Chebrolu, 2020).

This study is limited by its exclusive reliance on published conceptual models, which may exclude novel frameworks found in non-peer-reviewed sources or publications in languages other than English.

Future research should prioritize:

1. Empirical Testing: Rigorous empirical testing (using Structural Equation Modeling, SEM) of the Unified Conceptual Framework across various manufacturing sectors.
2. Moderating Factors: Investigating how industry context (e.g., discrete vs. process manufacturing) or institutional factors (e.g., regulatory stringency) moderate the GL → LGM → RE/WR relationship.
3. Longitudinal Studies: Assessing the time lag required for specific GL interventions to translate into measurable improvements in RE and WR.

CONCLUSION AND RECOMMENDATION

This systematic review confirms the critical theoretical role of Green Leadership in driving operational sustainability. The Unified Conceptual Framework reveals that GL primarily impacts Resource Efficiency and Waste Reduction by leveraging Green Process Innovation and Lean Green Manufacturing Implementation as key mediating mechanisms. The findings offer a robust theoretical foundation and a clear research blueprint for advancing sustainable POM literature..

REFERENCE

Agle, B. R., Mitchell, R. K., & Sonnenfeld, J. A. (2020). Who matters to CEOs? An investigation of stakeholder attributes and salience, corporate performance, and CEO values. *Academy of Management Journal*, 43(5), 1042-1051. <https://doi.org/10.5465/amj.2020.0822>

Bandura, A. (2001). *Social cognitive theory: An agentic perspective*. Annual Review of Psychology, 52, 1-26. <https://doi.org/10.1146/annurev.psych.52.1.1>

Barney, J. (1991). Firm resources and sustained competitive advantage. *Journal of Management*, 17(1), 99-120. <https://doi.org/10.1177/014920639101700108>

Bass, B. M., & Avolio, B. J. (1994). *Improving organizational effectiveness through transformational leadership*. Sage.

Boiral, O., Heras-Saizarbitoria, I., & Brotherton, M. C. (2015). Green management and environmental performance: A systematic review. *Business & Society*, 54(4), 441-472. <https://doi.org/10.1177/0007650315572062>

Chen, Y. S., & Chang, C. H. (2013). The determinants of green product development performance: Green dynamic capabilities, green transformational leadership, and green creativity. *Journal of Business Ethics*, 116(1), 107–119. (Foundational reference for GL).

Denyer, D., & Tranfield, D. (2009). Producing a systematic review. In D. A. Buchanan & A. Bryman (Eds.), *The SAGE handbook of organizational research methods* (pp. 671–689). SAGE Publications. (Methodological reference).

Elkington, J. (1997). *Cannibals with forks: The triple bottom line of 21st-century business*. Capstone.

Elliott, L., & Sobal, P. (2018). Leading sustainable organizations: Green leadership in practice. *Business Strategy and the Environment*, 27(4), 523-540. <https://doi.org/10.1002/bse.2321>

Faulkner, W., & Chebrolu, A. (2020). Integrating Lean and Green: A systematic review and future research agenda. *International Journal of Operations & Production Management*, 40(11), 1709–1740.

García, J., Lozano, J. F., & Albareda, L. (2020). Green management: Approaches and outcomes in practice. *Journal of Cleaner Production*, 276, 124-132. <https://doi.org/10.1016/j.jclepro.2020.124320>.

Jabbour, A. B. L. D. S., & Jabbour, C. J. C. (2016). Environmental management and innovation in business: The role of leadership and organizational culture. *International Journal of*

Operations & Production Management, 36(10), 1181-1202. <https://doi.org/10.1108/IJOPM-06-2015-0386>.

Jabbour, C. J. C., Jabbour, A. B. L. S., Sarkis, J., & Filho, D. P. (2019). The role of green leadership and green human resource management in promoting corporate environmental citizenship behavior. *Journal of Cleaner Production*, 222, 806–818.

Jabbour, C. J. C., Jabbour, A. B. L. S., Latan, H., & Godinho, M. (2020). Green operations and organizational performance: A systematic review and research agenda. *International Journal of Production Economics*, 225, 107593.

Kotter, J. P. (1996). *Leading change*. Harvard Business Review Press.

Linton, J. D., Klassen, R. D., & Jayaraman, V. (2017). The sustainable supply chain: A review and research agenda. *Journal of Operations Management*, 50(1), 6–18.

Melnyk, S. A., Sroufe, R. P., & Calantone, R. J. (2014). Assessing the impact of environmental management systems on corporate and environmental performance. *Journal of Operations Management*, 32(5), 285-294. <https://doi.org/10.1016/j.jom.2014.05.003>.

Miles, M. B., Huberman, A. M., & Saldaña, J. (2020). Qualitative data analysis: A methods sourcebook (4th ed.). SAGE Publications. (Methodological reference).

Porter, M. E., & Kramer, M. R. (2019). Creating shared value: How to reinvent capitalism—and unleash a wave of innovation and growth. *Harvard Business Review*, 89(1/2), 62–77.

Porter, M. E., & van der Linde, C. (1995). Green and competitive: Ending the stalemate. *Harvard Business Review*, 73(5), 120-134.

Schaltegger, S., & Wagner, M. (2017). Sustainable entrepreneurship and sustainability innovation: Categories and interactions. *Business Strategy and the Environment*, 26(6), 833–845.

United Nations. (2015). Transforming our world: The 2030 Agenda for Sustainable Development. Department of Economic and Social Affairs.