PERBANDINGAN ALGORITMA RENDOM FOREST DAN SUPPORT VECTOR MECHINE (SVM) UNTUK PREDIKSI TREN PASAR CRYPTOCURRENCY BERBASIS WEBSITE
Abstract
Pasar cryptocurrency memiliki karakteristik yang sangat fluktuatif dan sulit diprediksi secara manual, sehingga dibutuhkan pendekatan berbasis machine learning untuk membantu dalam menganalisis tren harga. Penelitian ini bertujuan untuk membandingkan performa algoritma random forest dan support vector machine (SVM) dalam memprediksi tren pasar cryptocurrency, serta mengembangkan sistem prediksi berbasis website yang dapat diakses oleh pengguna. Penelitian menggunakan metode pengembangan perangkat lunak waterfall dan data historis bitcoin dan ethereum yang diperoleh dari CoinGecko. Proses pengolahan data mencakup pembersihan, pelabelan tren, serta pelatihan model dengan algoritma random forest dan SVM. Hasil pengujian menunjukkan bahwa kedua algoritma menghasilkan akurasi sangat tinggi, yaitu 100% untuk bitcoin dan 98,61% untuk ethereum. Sistem berhasil dikembangkan menggunakan framework flask dan Chart.js, dengan fitur pelatihan model, prediksi otomatis, dan visualisasi grafik harga. Kesimpulannya, algoritma yang digunakan sama-sama efektif dalam memprediksi tren pasar kripto, dan sistem yang dibangun dapat dijadikan alat bantu analisis bagi pengguna
Downloads
Published
Issue
Section
License
Copyright (c) 2025 M ZIDNI ILMAN, Santi Rahayu

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Prosiding Seminar Informatika dan Sistem Informasi have CC-BY-NC-SA or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work.
In developing strategy and setting priorities, Prosiding Seminar Informatika dan Sistem Informasi recognize that free access is better than priced access, libre access is better than free access, and libre under CC-BY-NC-SA or the equivalent is better than libre under more restrictive open licenses. We should achieve what we can when we can. We should not delay achieving free in order to achieve libre, and we should not stop with free when we can achieve libre.
Prosiding Seminar Informatika dan Sistem Informasi is licensed under a Creative Commons Attribution 4.0 International License
YOU ARE FREE TO:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms