PENERAPAN DATA MINING UNTUK MENGANALISIS EFEKTIVITAS LAYANAN VAKSINASI MENGGUNAKAN METODE XGBOOST DI AMS KLINIK
Abstract
Penelitian ini dilakukan untuk menganalisis dan mengevaluasi efektivitas layanan vaksinasi di AMS Klinik sebagai upaya peningkatan kualitas pelayanan kesehatan. Evaluasi ini penting dilakukan agar pihak klinik dapat memahami faktor-faktor yang memengaruhi capaian vaksinasi, sehingga hasilnya dapat digunakan sebagai dasar dalam pengambilan keputusan strategis untuk meningkatkan efisiensi dan mutu layanan. Untuk mencapai tujuan tersebut, penelitian ini menggunakan pendekatan data mining dengan algoritma Extreme Gradient Boosting (XGBoost). Data penelitian berasal dari data internal AMS Klinik yang melalui beberapa tahapan, yaitu pre-processing, normalisasi, serta pelatihan model menggunakan XGBoost. Algoritma ini dipilih karena memiliki kemampuan tinggi dalam melakukan klasifikasi serta menentukan feature importance pada data berukuran besar dan kompleks. Hasil penelitian menunjukkan bahwa model XGBoost mampu memprediksi tingkat efektivitas layanan vaksinasi dengan akurasi sebesar 98%, yang menandakan performa sangat baik dan tingkat kesalahan prediksi yang rendah. Meskipun demikian, keterbatasan kualitas dan kelengkapan data masih menjadi tantangan utama. Oleh karena itu, penelitian lanjutan disarankan untuk menggunakan dataset yang lebih luas dan bervariasi agar hasil prediksi semakin optimal dan representatif terhadap kondisi nyata layanan vaksinasi.
Kata kunci: vaksinasi, data mining, XGBoost, efektivitas layanan, AMS Klinik
Downloads
Published
Issue
Section
License
Copyright (c) 2025 FARDA AFIDATUL ULYA

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Prosiding Seminar Informatika dan Sistem Informasi have CC-BY-NC-SA or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work.
In developing strategy and setting priorities, Prosiding Seminar Informatika dan Sistem Informasi recognize that free access is better than priced access, libre access is better than free access, and libre under CC-BY-NC-SA or the equivalent is better than libre under more restrictive open licenses. We should achieve what we can when we can. We should not delay achieving free in order to achieve libre, and we should not stop with free when we can achieve libre.
Prosiding Seminar Informatika dan Sistem Informasi is licensed under a Creative Commons Attribution 4.0 International License
YOU ARE FREE TO:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms