Segmentasi Pengalaman Pelanggan Pengguna Aplikasi Youtube Streaming Pada Daerah Jakarta Selatan Menggunakan Metode K-Means (Studi Kasus PT. XL AXIATA Tbk.)

Authors

  • Patria Adhistian Universitas Pamulang

DOI:

https://doi.org/10.32493/tkg.v3i1.18981

Keywords:

Data mining, CRISP-DM, clustering, K-means, QoS parameters

Abstract

YouTube is one of the largest video sharing sites on the internet. More than 1.9 billion users per month visit YouTube. 70% of total YouTube watch time comes from mobile phones. Therefore, as a network service provider, PT XL Axiata Tbk. intends to improve the quality of service and quality of customer experience by targeting high value customers. One way is to track the customer experience of watching videos on the internet, one of which is on YouTube. Segmentation is one way to find and identify the quality of the experience that customers receive. To choose the right quality problem handling, service providers need to look at network service quality parameters, such as throughput, delay, and latency. Segmentation is carried out using a data mining approach, to be precise with the K-means clustering technique. The working method follows the Cross Industry Standard Process for Data Mining (CRISP-DM) methodology. Through the data preparation stage, 4 important attributes are obtained for modeling. Determination of the optimal number of clusters using the Elbow Method shows that there are 3 clusters formed, with cluster 2 as the best cluster, and cluster 1 as the most dominant cluster of users. This research can be used for PT XL Axiata Tbk. as input in the quality of network services for customers.

References

, Developer Zen. [Online]. Available: https://developerzen.com/data-mining-handling-missing-values-the-database-bd2241882e72

, Bantuan YouTube. [Online] Available: https://support.google.com/youtube/answer/3037019?hl=id&ref_topic=9257580

, Lori Carr and Associates. [Online]. Available: http://loricarrassociates.com/customer-segmentation-a-very-delicious-customer-experience-strategy/

, YouTube for Press. [Online]. Available: https://www.youtube.com/yt/about/press/

A. Andriani, “Klasifikasi Berbasis Algoritma C4.5 untuk Deteksi Kenaikan Case Fatality Rate Demam Berdarahâ€, Seminar Nasional Informatika Medis, 2017, pp. 70-75.

A. Sangsari, Isnawaty, and L. Aksara, Analisis QoS (Quality of Service) pada Layanan Video Streaming yang Menggunakan Protokol RTMP (Real Time Messaging Protocol), “semanTIKâ€, Vol. 2, pp. 177-188.

A. Savitri, F. Bachtiar, and N. Setiawan, Segmentasi Pelanggan Menggunakan Metode K-means Clustering Berdasarkan Model RFM pada Klinik Kecantikan (Studi Kasus: Belle Crown Malang), “Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer (J-PTIIK)â€, Vol. 2, pp. 2957-2966.

B. E. Adiana, I. Soesanti, and A. E. Permanasari, Analisis Segmentasi Pelanggan Menggunakan Kombinasi RFM Model dan Teknik Clustering, “JUTEIâ€, Vol. 2, pp. 23-32, 2018.

I. Iskandar and A. Hidayat, Analisa Quality of Service (QoS) Jaringan Internet Kampus (Studi Kasus: UIN Suska Riau), “Jurnal Core ITâ€, Vol. 1, pp. 67-76, 2015.

J. Spiess, Y. T’Joens, and R. Dragnea, Using Big Data to Improve Customer Experience and Business Performance, “Bell Labs Technical Journalâ€, Vol. 18, pp. 3-17, 2014.

M. Fiedler, T. Hossfield, and P. Tran-Gia, A Generic Quantitative Relationship between Quality of Experience and Quality of Service, “IEEE Networkâ€, Vol. 24, pp. 36-41, 2010.

P. N. Tan, M. Steinbach, and V. Kumar, “Introduction to Data Miningâ€, Second Edition, M. Goldstein and K. Harutunian, Boston, Pearson Education. Inc, 2006.

R. Noor, and S. Khosandroo, Quality of Experience Key Metrics Framework for Network Mobility User, “International Journal of Physical Sciencesâ€, Vol. 6, pp. 6521-6528, 2011.

T. Hardiani, S. Sulistyo, and R. Hartanto, “Segmentasi Nasabah Tabungan Menggunakan Model RFM (Recency, Frequency, Monetary) dan K-Means pada Lembaga Keuangan Mikroâ€, Seminar Nasional Teknologi Informasi dan Komunikasi Terapan (SEMANTIK), 2017.

Widiarina and R. S. Wahono, Algoritma Cluster Dinamik untuk Optimasi Cluster pada Algoritma K-means dalam Pemetaan Nasabah Potensial, “Journal of Intelligent Systemsâ€, Vol. 1, pp. 33-36, 2015

Downloads

Published

2020-03-31

Issue

Section

Articles