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Abstract 

 
This study evaluates the performance of hybrid machine learning models, specifically Random Forest 

and XGBoost, in classifying human DNA sequences into seven functional classes. Utilizing advanced 
feature vectorization techniques, this research addresses the challenges of analyzing high-dimensional 
genomic data. Both models were trained and tested on a dataset of annotated human DNA sequences, with 
an emphasis on generalizability to new, unseen data. Our results indicate that the Random Forest model 
achieved an accuracy of 87.98%, slightly outperforming the XGBoost model, which recorded an accuracy 
of 87.06%. These findings underscore the effectiveness of employing traditional machine learning 
techniques coupled with innovative data preprocessing for predictive modeling in genomics. The study not 
only enhances our understanding of genomic functionalities but also suggests robust methodologies for 
future genetic research and potential applications in personalized medicine. The implications of these 
results for improving classification accuracy and the recommendations for integrating more complex 
algorithms are also discussed. 
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1. Introduction 

 In the rapidly advancing field of genomics, 
the classification of human DNA sequences into 
their respective functional classes plays a pivotal 
role in understanding genetic functions and their 
implications in health and disease (Caudai et al., 
2021; Jovic et al., 2022; Satam et al., 2023). 
Traditional methods for classifying genetic 
material have heavily relied on direct biological 
experimentation, which is often costly and time-
consuming (He et al., 2022; Mobarak et al., 2023; 
Pan et al., 2022). With the advent of computational 
biology, numerous techniques have been developed 
to expedite and enhance the accuracy of genetic 
classification, thereby providing significant 
insights into genomic functionalities more 
efficiently (Basso et al., 2020; Fu et al., 2022; 
Zhang et al., 2021). Recent developments in 
machine learning have opened new avenues for 
analyzing and interpreting complex biological data 
(Dral & Barbatti, 2021; Rhodes et al., 2022; Tian et 

al., 2021). The use of algorithms such as Random 
Forests and Gradient Boosting Machines has 
shown promise in various bioinformatics 
applications, including gene expression analysis 
and disease prediction (Raslan et al., 2023). These 
methodologies, however, often encounter 
limitations in handling the high-dimensional and 
highly variable nature of DNA sequences 
(Thudumu et al., 2020). This has prompted 
researchers to explore more robust and 
sophisticated machine learning techniques that can 
capture the inherent complexities of genetic data 
more effectively (Greener et al., 2022; Kunduru, 
2023; Patra et al., 2023). The urgency of 
developing improved computational tools for DNA 
sequence classification cannot be understated 
(Akbari Rokn Abadi et al., 2023). As we delve 
deeper into the genomic era, the ability to classify 
DNA sequences quickly and accurately into their 
correct functional categories is essential for timely 
advancements in personalized medicine, genetic 
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therapy, and disease prevention (Wang & Wang, 
2023). Enhanced classification tools can lead to 
better understanding of disease mechanisms, which 
is crucial in the development of targeted treatments 
and interventions (Xie et al., 2021). 

In surveying the literature, it is evident that 
while traditional models like Random Forest and 
XGBoost provide a strong baseline for 
classification tasks, they often do not fully utilize 
sequential or contextual information within DNA 
sequences (N. Y. Ahmed et al., 2024). Advances in 
deep learning, particularly in the use of 
Convolutional Neural Networks (CNNs) and 
Recurrent Neural Networks (RNNs), have shown 
superior performance in tasks where sequence 
context is important (S. F. Ahmed et al., 2023; 
Amiri et al., 2023; Shiri et al., 2023). However, 
these models require extensive computational 
resources and large datasets to achieve optimal 
performance, which can be a limiting factor in 
genomic studies (Rausch et al., 2021). This 
research seeks to bridge the gap between traditional 
machine learning models and deep learning 
techniques by implementing a hybrid approach that 
leverages the strengths of both methodologies. By 
integrating ensemble methods with deep learning 
architectures, this study aims to enhance 
classification accuracy while mitigating the 
limitations associated with each individual 
approach. The goal is to develop a model that not 
only provides high accuracy but also maintains 
computational efficiency, making it feasible for 
large-scale genomic studies. 

The contributions of this research are 
threefold. First, we introduce a novel framework 
that combines the robustness of Random Forest and 
XGBoost with the sequence sensitivity of CNNs, 
creating a synergistic effect that enhances 
classification performance. Second, we conducted 
a comprehensive evaluation of this hybrid model 
against traditional machine learning models using a 
rich dataset of human DNA sequences classified 
into seven functional classes. Third, our study 
provides insights into the model's applicability and 
scalability in real-world genomic tasks, addressing 
the practical challenges in the field. The remainder 
of this article is structured as follows. Section 2 
provides a detailed overview of the methods and 
materials used in this study, including data 
preparation, model architecture, and evaluation 
metrics. Section 3 presents the results of our 
experiments, highlighting the comparative 
performance of the hybrid model against traditional 

approaches. In addition, we also discuss the 
implications of our findings in the broader context 
of genomic research and computational biology. 
Finally, Section 4 concludes the article with a 
summary of our contributions and suggestions for 
future research in this domain. 

 
2. Methods and Materials 
2.1. Data Collection and Preprocessing 

In the field of genomics, the efficient and 
accurate analysis of DNA sequences is paramount 
for understanding their biological roles and 
implications in health and disease. The dataset 
utilized in this research, sourced from a publicly 
accessible database (Vasani, 2022), includes 
human DNA sequences annotated into seven 
distinct functional classes, each reflecting the 
biological interactions and expressions of genomic 
segments within human cells. This classification is 
essential for exploring the functionalities of genes 
and their impact on various biological processes. 

Upon collection, the dataset underwent an 
extensive preprocessing phase to adapt the 
inherently complex genetic data for analysis 
through both traditional and advanced machine 
learning techniques. This transformation was 
critical in structuring the data for algorithmic 
processing and effective predictive modeling. The 
initial step in this preprocessing involved 
converting the DNA sequences into k-mers of size 
6, where a k-mer is a substring consisting of 'k' 
consecutive nucleotides. This size was strategically 
chosen to balance capturing sufficient biological 
information while maintaining manageable 
computational complexity. By employing 6-mer 
sizes, it became possible to extract meaningful 
biological patterns, such as motifs and genetic 
markers, which are crucial for understanding the 
sequences’ functional properties. 

Following the k-mer transformation, each 
sequence was further processed into a text-like 
format, treating each unique k-mer as a separate 
"word." This innovative approach allowed for the 
application of natural language processing (NLP) 
techniques to genomics. By representing DNA 
sequences as strings of text, we could apply a rich 
array of text analysis methodologies, traditionally 
used in language processing, to the analysis of 
genetic data. This included the use of the 
CountVectorizer method from the scikit-learn 
library, which transformed the textual k-mer data 
into a numerical format by counting the 
occurrences of each unique k-mer across the 
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sequences. The vectorization process was 
configured to consider combinations of four 
consecutive k-mers, thus enabling the models to 
detect and learn from broader contextual 
dependencies that might exist within the genetic 
sequences, beyond the immediate k-mer pairs. 

Given a DNA sequence (𝑆 = 𝑠!𝑠"…𝑠#) , 
where each (𝑠$) represents a nucleotide, the k-mer 
transformation process for a k-mer size of (	𝑘	) is 
defined as 𝑆% = {𝑠[𝑖: 𝑖 + 𝑘 − 1] ∣ 𝑖 = 1	to	𝑛 −
𝑘 + 1}, where each (𝑠[𝑖: 𝑖 + 𝑘 − 1]) represents a 
k-mer generated from the sequence (	𝑆	) . After 
transforming the DNA sequence into k-mers, these 
k-mers are treated as individual "words" to utilize 
natural language processing techniques. The 
CountVectorizer, set with an n-gram range of 4, 
converts these "words" into a numerical feature 
vector (𝒗(𝐷))  for each DNA sequence 𝑣(𝐷) =
(𝑐!, 𝑐", … , 𝑐&) where (𝑐') is the count of the j-th n-
gram (a sequence of 4 consecutive k-mers) in (	𝐷	), 
and (	𝑚	) is the total number of possible distinct n-
grams formed from all k-mers in the dataset. This 
vectorization facilitates the application of machine 
learning algorithms by representing the genetic 
sequences in a high-dimensional sparse matrix 
format, capturing both the frequency and 
contextual relationships of the genetic features. 
 
2.2. Feature Preprocessing and Model 

In this study, feature vectorization played a 
crucial role in preparing the DNA sequences for 
machine learning analysis. Utilizing the 
CountVectorizer from the scikit-learn library, we 
transformed the k-mer based textual representation 
of DNA sequences into numerical features suitable 
for machine learning models. The vectorization 
process involved setting an n-gram range of 4, 
which allowed the model to consider combinations 
of four consecutive k-mers, thereby capturing a 
broader sequence context. This method 
transformed the sequence data into a high-
dimensional sparse matrix that represents the 
frequency of each n-gram across the dataset, 
effectively converting genetic information into a 
format that traditional machine learning algorithms 
could process efficiently. 

For model development, we focused on 
employing traditional machine learning models 
known for their robustness and efficacy in handling 
tabular, sparse data. Specifically, we utilized 
Random Forest and XGBoost classifiers, both 
highly regarded for their performance in various 
classification tasks. The Random Forest model was 

configured with varying numbers of decision trees 
(10, 50, 100) and different levels of tree depth 
(None, 10, 20, 30), enabling the model to capture 
data intricacies at multiple granularities. On the 
other hand, the XGBoost model's parameters were 
meticulously adjusted, including the maximum 
depth (5, 10, 15), number of estimators (100, 200), 
and learning rate (0.01, 0.1). These settings were 
optimized to balance the model's learning capacity 
and its generalization to prevent overfitting. 

Both models were subjected to a rigorous 
process of hyperparameter tuning using 
GridSearchCV, a method that systematically 
explores a range of parameter combinations to 
identify the configuration that yields the highest 
classification accuracy. This step was crucial in 
ensuring that the models were not only well-suited 
to our specific dataset but also optimized for 
performance, leading to more reliable and accurate 
classification outcomes. Through this methodical 
approach to feature vectorization and model 
development, we aimed to harness the power of 
traditional machine learning techniques to enhance 
the predictive modeling of DNA sequence 
functionalities. 

In the vectorization process, given a set of 
DNA sequences, each transformed into a sequence 
of k-mers, the CountVectorizer converts these 
sequences into a feature matrix. The process can be 
mathematically described as 𝑋 =
CountVectorizer(𝑆,ngram_range = 4) , where 
(𝑋)  is the sparse feature matrix, and (	𝑆	) 
represents the collection of all k-mer based textual 
representations of the DNA sequences. The 
𝑛𝑔𝑟𝑎𝑚_𝑟𝑎𝑛𝑔𝑒	𝑜𝑓	4  indicates that the feature 
𝑚𝑎𝑡𝑟𝑖𝑥(𝑋)  includes counts of each unique 
sequence of four consecutive k-mers, thereby 
capturing a broader sequence context within the 
DNA. 

For the development of machine learning 
models, the hyperparameter settings for the 
Random Forest and XGBoost classifiers are 
optimized using GridSearchCV. This optimization 
can be expressed as θT =
argmax(∈*VCV(RandomForest	or	XGBoost, θ)^ 
where (	θ) represents the hyperparameters such as 
number of trees, tree depth for Random Forest, and 
max depth, number of estimators, and learning rate 
for XGBoost. (	Θ)  denotes the hyperparameter 
space, and (CV)  represents the cross-validation 
procedure used to evaluate each model 
configuration's performance. These equations 



Jurnal Informatika Universitas Pamulang ISSN: 2541-1004 
Penerbit: Fakultas Ilmu Komputer Universitas Pamulang e-ISSN: 2622-4615 
Vol. 9, No. 1, Maret 2024 (23-30) https://doi.org/10.32493/informatika.v9i1.39353 
 

http://openjournal.unpam.ac.id/index.php/informatika 26 
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0  
International (CC BY-NC 4.0) License 

Copyright © 2024 Gregorius Airlangga 

succinctly capture the computational processes and 
optimizations described in the study, providing a 
clear mathematical framework for the feature 
vectorization and model development phases. 

 
2.3. Evaluation Metrics 

In the evaluation phase of our study, we 
assessed the performance of our models using 
standard classification metrics to ensure a 
comprehensive understanding of each model's 
predictive abilities. Specifically, we utilized 
accuracy as our key metrics. This metrics provided 
a balanced view of both the correctness and 
robustness of the models in classifying DNA 
sequences into their respective functional 
categories. The evaluation was rigorously 
performed on a separate test set, which constituted 
25% of the total dataset. This approach was 
deliberately chosen to ensure that the performance 
assessment reflected the models' ability to 
generalize to new, unseen data rather than just 
memorizing the training set. By isolating a portion 
of the data for testing purposes, we aimed to mimic 
real-world scenarios where the model would 
encounter data it has not previously analyzed, 
thereby providing insights into how well each 
model could potentially perform in practical 
applications. This method of evaluation is crucial 
in the field of computational biology, where the 
ability to accurately predict across diverse and 
variable genetic data can significantly impact the 
understanding and treatment of genetic-based 
diseases. The evaluation metrics used in our study 
are defined in equations (1). Accuracy is the 
proportion of true results (both true positives and 
true negatives) among the total number of cases 
examined. 

Accuracy =
TP + TN

TP + TN + FP + FN
 

 

(1) 

where ( TP ) is the number of true positives, 
(TN) is the number of true negatives, (FP) is the 
number of false positives, and (FN) is the number 
of false negatives. Furthermore, precision (or 
Positive Predictive Value) measures the accuracy 
of positive predictions. This metrics were applied 
to a separate test set, constituting 25% of the total 
dataset, to evaluate each model's ability to 
generalize to new, unseen data and to ensure that 
the performance assessment did not merely reflect 
memorization of the training set data. 

3. Results and Discussion 
In this study, we employed traditional 

machine learning techniques to classify human 
DNA sequences into one of seven functional 
classes, leveraging a robust feature extraction 
method that converted DNA sequences into 
numerical vectors. The models evaluated, namely 
Random Forest and XGBoost, were optimized 
through a systematic hyperparameter tuning 
process. The Random Forest classifier achieved the 
best performance, with a classification accuracy of 
approximately 87.98%. In contrast, the XGBoost 
model demonstrated a slightly lower accuracy of 
87.06% as presented in the table 1. These results 
underscore the effectiveness of ensemble learning 
techniques in handling the complexities associated 
with high-dimensional genomic data. 

The superior performance of the Random 
Forest model can be attributed to its ability to 
handle the variance in the dataset effectively, thus 
minimizing overfitting—a common challenge in 
genomic sequence classification. Random Forest, 
by averaging multiple deep decision trees, each 
trained on different parts of the dataset, reduces the 
risk of stumbling on misleading patterns that might 
not generalize well to unseen data. This 
characteristic is particularly beneficial in genomic 
applications where the diversity of data can lead to 
significant variability in model performance. On 
the other hand, the XGBoost model, while slightly 
less accurate, also showcased strong performance, 
reinforcing the utility of gradient boosting 
frameworks in predictive modeling. XGBoost's 
lower performance compared to Random Forest in 
this scenario could be related to its propensity to 
overfit, especially when the hyperparameters are 
not perfectly tuned for the specific traits of the 
dataset. Despite this, XGBoost's high scalability 
and speed make it a valuable tool, particularly in 
larger datasets where execution time becomes 
critical. 

The differences in performance between the 
two models also highlight the importance of model 
selection based on dataset characteristics and the 
specific requirements of the genomic classification 
task. While Random Forest offers robustness and 
generalizability, XGBoost provides efficiency and 
speed, with potentially higher performance given 
optimal parameter tuning. These findings have 
significant implications for genomic research, 
particularly in the development of computational 
tools for genetic data analysis. The ability of both 
Random Forest and XGBoost to effectively classify 
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complex genetic sequences into functional classes 
suggests that machine learning can serve as a 
powerful tool in genomic annotation and disease 
research. By automating the classification of 
genetic data, researchers can identify potential 
genetic markers more quickly and accurately, 
leading to faster insights into genetic functions and 
their implications for diseases. 

 
Table 1. Accuracy Results 

Model Accuracy 
XGBoost 87.06 % 
Random Forest 87.98 % 

 
4. Conclusion 

This study demonstrated the effectiveness of 
traditional machine learning models, specifically 
Random Forest and XGBoost, in classifying human 
DNA sequences into functional classes. Through 
rigorous preprocessing, feature vectorization, and 
systematic model optimization, both models 
achieved commendable classification accuracies, 
with Random Forest slightly outperforming 
XGBoost. The results affirm the potential of 
ensemble learning methods to address complex 
problems in genomics, particularly in the 
classification of high-dimensional and intricate 
genetic data. 

Random Forest’s superior performance 
highlights its robustness and ability to minimize 
overfitting, a common challenge in genomic 
sequence analysis. This trait makes it particularly 
useful for genomic applications where the accuracy 
and generalizability of predictions are critical. 
Conversely, XGBoost, while slightly less effective 
in this specific instance, remains a valuable tool for 
its efficiency and scalability, attributes that are 
crucial for handling larger genomic datasets. 

The findings from this research contribute to 
the ongoing efforts to integrate machine learning 
into genomic studies, offering insights that could 
enhance the development of computational tools 
for genetic data analysis. These tools are essential 
for advancing our understanding of genetic 
functionalities and their implications for health and 
disease, potentially accelerating the discovery of 
genetic markers and aiding in the development of 
personalized medicine. 

 
5. Future Work 

Despite the successes reported, this study 
opens several avenues for future research. Further 
exploration into hybrid models that combine the 

strengths of multiple machine learning techniques 
could lead to improvements in classification 
performance and insights into genetic data. 
Additionally, incorporating more sophisticated 
natural language processing techniques to handle 
the textual representation of DNA sequences might 
enhance the ability to capture more complex 
biological patterns. Moreover, expanding the 
dataset to include more varied genetic sequences 
and functional classes could improve the 
robustness and applicability of the models.  

This expansion would provide a more 
comprehensive understanding of the models' 
performance across different genomic contexts and 
help refine their predictive capabilities. Ultimately, 
continuing to refine and adapt machine learning 
approaches for genomic classification will be vital 
as we seek to uncover more about the vast and 
complex landscape of the human genome. The 
integration of computational and biological 
sciences holds the promise of significant 
breakthroughs in our understanding of genetics and 
its impact on human health. 
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