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Abstract 
 

Human DNA sequence classification is a fundamental task in genomics, essential for understanding 
genetic variations and its implications in disease susceptibility, personalized medicine, and evolutionary 
biology. This study proposes a novel hybrid model combining Convolutional Neural Networks (CNN) for 
feature extraction and Random Forest classifiers for final classification. The model was evaluated on a 
dataset of human DNA sequences, with achieving an accuracy of 75.34%. The results showed that 
performance metrics, including precision, recall, and F1-scores across multiple classes, showed significant 
improvements over traditional models. The CNN component effectively captures local dependencies and 
patterns within the sequences, while the Random Forest classifier handles complex decision boundaries, 
resulting in enhanced classification accuracy. Comparative analysis demonstrated the superiority of our 
hybrid approach, with the CNN-LSTM model achieving only 59.47% accuracy, and other RNN-based 
models like CNN-GRU and CNN-BiLSTM performing similarly lower. These results suggest that hybrid 
models can leverage the strengths of both deep learning and traditional machine learning techniques an 
offering a more effective tool for DNA sequence classification. The future work will optimize model 
architecture and explore larger, thus more diverse datasets to validate our approach's generalizability and 
robustness. 
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1. Introduction 

 Advancements in the field of genomics have 
significantly enhanced our understanding of the 
human genome, paving the way for breakthroughs 
in medical research, personalized medicine, and 
biotechnology (Satam et al., 2023; Sindelar, 2024; 
Wilson et al., 2022). One of the key challenges in 
genomics is the accurate classification of DNA 
sequences, which is crucial for identifying genetic 
disorders, understanding evolutionary 
relationships, and discovering new genetic markers 
(Laskar et al., 2021; Maharachchikumbura et al., 
2021; Theodoridis et al., 2020). Traditional 
methods for DNA sequence classification often 
rely on manual feature extraction and domain-
specific knowledge, which can be both time-
consuming and prone to human error (Alamro et 
al., 2024; Landolsi et al., 2024; Papoutsoglou et al., 
2023). In recent years, machine learning techniques 
have emerged as powerful tools for automating the 

analysis of genomic data, offering the potential for 
greater accuracy and efficiency (Li et al., 2022; Tan 
et al., 2021; Waring et al., 2020). 

The classification of DNA sequences 
involves determining the class or category to which 
a given sequence belongs, based on its nucleotide 
composition (Tao et al., 2023). This task is 
challenging due to the vast amount of data and the 
complex patterns inherent in genomic sequences 
(Cortés-Ciriano et al., 2022). Traditional 
approaches, such as k-mer counting and motif 
analysis, have been used extensively but often 
require significant preprocessing and domain 
expertise (Nisa et al., 2021). Machine learning 
models, particularly deep learning architectures, 
offer a promising alternative by automating feature 
extraction and learning directly from raw sequence 
data (Goshisht, 2024). 

This study offers a novel approach for 
human DNA sequence classification using a 
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combination of deep learning and ensemble 
learning techniques. Specifically, we employ a 
Convolutional Neural Network (CNN) for 
automatic feature extraction from DNA sequences, 
followed by a Random Forest classifier to perform 
the final classification. CNN is designed to capture 
local patterns in the DNA sequences through 
convolutional layers, while Random Forest, an 
ensemble classifier, leverages the extracted 
features to make robust predictions. Ensemble 
classifiers like Random Forest work by combining 
the predictions of multiple base classifiers, 
typically decision trees, will enhance overall 
prediction performance. Using aggregating the 
outputs of these individual trees, Random Forest 
reduces the risk of overfitting and increases the 
model's accuracy and generalizability. This hybrid 
approach aims to leverage the strengths of both 
deep learning and traditional machine learning 
methods, potentially improving classification 
accuracy and generalizability. The urgency of 
developing accurate and efficient methods for 
DNA sequence classification cannot be overstated. 
With the increasing availability of genomic data, 
driven by advances in sequencing technologies, 
there is a pressing need for scalable and reliable 
analytical methods (Goshisht, 2024). Accurate 
classification of DNA sequences has far-reaching 
implications, including the early detection of 
genetic diseases, identification of therapeutic 
targets, and advancements in evolutionary biology 
(Satam et al., 2023). Moreover, the ability to 
automate this process can significantly reduce the 
time and resources required for genomic research, 
accelerating the pace of discovery and innovation 
(Liu et al., 2020). 

Our literature survey reveals a diverse array 
of approaches for DNA sequence classification, 
ranging from traditional statistical methods to 
cutting-edge machine learning algorithms (Cheng 
et al., 2023). Early methods focused on alignment-
based techniques, such as BLAST, which compare 
DNA sequences to known reference sequences 
(Wang et al., 2022). While effective, these methods 
are computationally intensive and may not scale 
well with large datasets (Rashed et al., 2021). 
Alignment-free methods, such as k-mer frequency 
analysis, offer an alternative by representing 
sequences as fixed-length vectors, enabling faster 
comparisons. However, these methods often 
require extensive feature engineering and may not 
capture complex patterns in the data (Narayanan et 
al., 2021). Recent advances in machine learning, 

particularly deep learning, have shown great 
promise in the field of genomics. Convolutional 
Neural Networks (CNNs) have been successfully 
applied to various genomic tasks, including 
sequence classification, motif discovery, and 
variant calling (Avanzo et al., 2020). CNNs are 
well-suited for genomic data due to their ability to 
capture local dependencies and hierarchical 
patterns (Walkowiak et al., 2020). However, 
training deep learning models on genomic data can 
be challenging due to the high dimensionality and 
limited availability of labeled data (Meharunnisa et 
al., 2024). Ensemble learning methods, such as 
Random Forests, provide a complementary 
approach by aggregating predictions from multiple 
models to improve accuracy and robustness 
(Mahmud et al., 2021). 

State-of-the-art methods for DNA sequence 
classification often combine deep learning with 
traditional machine learning techniques to leverage 
their respective strengths (Luo et al., 2021). For 
instance, hybrid models that integrate CNNs with 
support vector machines (SVMs) or decision trees 
have shown improved performance over individual 
models (Khan et al., 2020). These approaches 
benefit from the feature extraction capabilities of 
deep learning and the interpretability and 
robustness of traditional classifiers (Balamurugan 
& Gnanamanoharan, 2023; Bian & Priyadarshi, 
2024). Our proposed method builds on this 
paradigm by using CNN for feature extraction and 
Random Forest for classification, aiming to achieve 
a balance between accuracy, efficiency, and 
interpretability. 

The objective of this study is to develop a 
robust and accurate method for human DNA 
sequence classification that can outperform 
traditional approaches. We aim to demonstrate that 
the combination of CNN and Random Forest can 
effectively capture complex patterns in DNA 
sequences and provide reliable predictions. 
Additionally, we seek to compare our method with 
other traditional models, such as k-mer frequency 
analysis and alignment-based techniques, to 
highlight the advantages and limitations of each 
approach. Gap analysis reveals several areas where 
current methods fall short. Traditional approaches 
often require extensive preprocessing and feature 
engineering, which can be both time-consuming 
and prone to human error. Deep learning models, 
while powerful, may suffer from overfitting and 
require large amounts of labeled data for training. 
Hybrid models, which combine deep learning and 
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traditional machine learning techniques, offer a 
promising solution but have not been extensively 
explored in the context of DNA sequence 
classification. Our research aims to address these 
gaps by developing a hybrid model that is both 
accurate and efficient, with minimal preprocessing 
requirements. 

Our contributions to the field are threefold. 
First, we propose a novel hybrid model that 
combines a CNN for feature extraction with a 
Random Forest for classification, offering a 
balance between accuracy and interpretability. 
Second, we conduct a comprehensive comparison 
of our method with traditional models, 
demonstrating its advantages in terms of accuracy 
and efficiency. Third, we provide a detailed 
analysis of the model's performance, highlighting 
its ability to capture complex patterns in DNA 
sequences and its potential for scalability to large 
datasets. The remaining structure of this journal 
article is organized as follows. In the Methods 
section, we provide a detailed description of the 
dataset, preprocessing steps, and model 
architecture. The Results section presents the 
performance metrics of our proposed method, 
along with a comparison to traditional models. 
Finally, the Conclusion section summarizes our 
contributions and outlines potential directions for 
future research. 

 
2. Research Methodology 
2.1. Dataset 

The dataset used in this study consists of 
human DNA sequences, each associated with a 
specific class label indicating its category or 
function. These sequences are drawn from a 
comprehensive genomic database, and the dataset 
encompasses seven distinct classes representing 
different functional categories. Each DNA 
sequence is composed of the four nucleotides: 
adenine (A), cytosine (C), guanine (G), and 
thymine (T). The sequences vary in length but have 
an average length of approximately 150 
nucleotides. The dataset is stored in a tab-separated 
text file with columns representing the DNA 
sequences and their corresponding class labels. 
Dataset can be downloaded from (Vasani, 2022). 

 
2.2. Preprocessing Steps 

Preprocessing is a crucial step in preparing 
the dataset for model training. The steps involved 
in preprocessing the dataset are as follows: First, 
the handling missing values and data cleansing is 

conducted. The dataset is first checked for missing 
values and inconsistencies. Any sequences with 
missing nucleotides or ambiguous characters (e.g., 
'N' for unknown bases) are either removed or 
replaced based on the overall quality and 
importance of the data. This ensures that the input 
data is clean and reliable, which is essential for both 
CNN and Random Forest to learn effectively. 

Furthermore, outlier detection and treatment 
are conducted. Outliers in the DNA sequences, 
which could be unusually short or long sequences 
or sequences with atypical nucleotide distributions, 
are identified. These outliers are either corrected, if 
possible, or removed to prevent them from skewing 
the model's learning process.the DNA sequences 
are converted into k-mers of length 3. Then k-mer 
transformation is conducted. The DNA sequences 
are converted into k-mers of length 3. A k-mer is a 
substring of length 𝑘 from a sequence. For a DNA 
sequence 𝑆 = 𝑠!, 𝑠", … , 𝑠#, where 𝑠$ represents the 
i-th nucleotide, the sequence is transformed into 
overlapping k-mers such that each k-mer is 
(𝑠$ , 𝑠$%!, … , 𝑠$%&'!). For example, for 𝑘	 = 	3, the 
sequence AGCTCGA would be represented as 
AGC, GCT, CTC, TCG, CGA. This transformation 
helps capture local patterns in the sequences. 

Next, the class labels are encoded into 
numerical values using a label encoder. Let the 
class labels be 𝐶 = {𝑐!, 𝑐", … , 𝑐(} , where 𝑐$ 
represents the i-th class. The label encoder assigns 
a unique integer to each class, transforming the 
labels into 𝐶) = {𝑦!, 𝑦", … , 𝑦(} , where 𝑦$  is the 
encoded value of class 𝑐$ . The k-mers are then 
tokenized, converting them into sequences of 
integers. Let the vocabulary of k-mers be 𝑉 =
{𝑣!, 𝑣", … , 𝑣&}, where 𝑣$ represents the i-th unique 
k-mer. The tokenizer maps each k-mer to a unique 
integer, transforming the sequence of k-mers into a 
sequence of integers 𝑇 = {𝑡!, 𝑡", … , 𝑡#}, where 𝑡$ is 
the integer representation of the i-th k-mer. 

To ensure uniform input dimensions for the 
neural network, the tokenized sequences are 
padded to a fixed length. Let 𝐿  be the desired 
sequence length. If the length of a tokenized 
sequence 𝑇 is less than 𝐿, it is padded with zeros to 
obtain a sequence of length 𝐿 . This results in a 
padded sequence 𝑇) = {𝑡!) , 𝑡") , … , 𝑡*) } , where 𝑡$)  is 
either an integer token or zero. Finally, the dataset 
is split into training and testing sets. Let X represent 
the set of padded sequences and Y represent the set 
of encoded labels. The dataset is split into training 
set (𝑋train, 𝑌train) and testing set (𝑋test, 𝑌test) using 
an 80-20 split, where 80% of the data is used for 
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training and 20% for testing. There are seven labels 
such as G-protein coupled receptors, Tyrosine 
kinase, Tyrosine phosphatase, Synthetase, 
Synthase, Ion channel Transcription factor  

 
2.3. Model Architecture 

As presented in figure 1, the proposed model 
architecture combines a Convolutional Neural 
Network (CNN) for feature extraction with a 
Random Forest classifier for final classification. 
CNN is designed to capture local patterns in the 
DNA sequences, while Random Forest leverages 
these features for robust predictions. 

 
Figure 1. Model’s Architecture 

 
2.3.1. Convolutional Neural Network (CNN) 

CNN consists of several layers designed to 
extract features from the input sequences. The 
architecture is as follows: firstly, an embedding 
layer maps the integer-encoded k-mers into dense 
vectors of fixed size. Let 𝐸  be the embedding 
matrix of size |𝑉| × 𝑑, where |𝑉| is the size of the 

k-mer vocabulary and 𝑑  is the embedding 
dimension. The embedding layer transforms the 
input sequence 𝑇) into a sequence of dense vectors 
𝑍 = {𝑧!, 𝑧", … , 𝑧*} , where 𝑧$ ∈ 𝑅2  is the 
embedding of the i-th k-mer. A convolutional layer 
applies a set of filters to the embedded sequences 
to capture local patterns. Let 𝐹 be the number of 
filters and 𝑘3  be the filter size. Each filter 𝑊 ∈
𝑅&!×2  is convolved with the input sequence to 
produce a feature map. The convolution operation 
is defined as ℎ$ = 𝑓 C𝑊 ⋅ 𝑧$:$%&!'! + 𝑏G, where ℎ$ 
is the i-th element of the feature map, 𝑓  is the 
activation function (ReLU), ⋅  denotes the dot 
product, and 𝑏 is the bias term. 

A global max pooling layer reduces the 
dimensionality of the feature maps by taking the 
maximum value over each feature map. This 
operation produces a fixed-length feature vector 
ℎ = {ℎ!, ℎ", … , ℎ6} , where ℎ$  is the maximum 
value in the i-th feature map. Fully connected layers 
further process the extracted features. Let 𝑊3 ∈
𝑅6×7  and 𝑊8 ∈ 𝑅7×9  be the weight matrices of 
the fully connected layers, where 𝐻 and 𝐺 are the 
number of units in the respective layers. The output 
of the fully connected layers is given by 𝑦3 =
𝑓J𝑊3 ⋅ ℎ + 𝑏3K and  𝑦8 = 𝑓J𝑊8 ⋅ 𝑦3 + 𝑏8K where 
𝑏3  and 𝑏8  are the bias terms, and 𝑓  is the ReLU 
activation function. The output 𝑦8  of the second 
fully connected layer is used as the feature vector 
for the subsequent classifier. 
 
2.3.2. Random Forest Classifier 

The extracted features 𝑦8 are used to trains a 
Random Forest classifier. A Random Forest is an 
ensemble learning method that constructs multiple 
decision trees and aggregates their predictions. Let 
𝐹$ be the i-th decision tree in the forest, and 𝑛 be 
the total number of trees. The prediction of the 
Random Forest for an input feature vector 𝑦8  is 
given by the majority vote of the individual trees 
𝑦M = mode{𝐹$J𝑦8K ∣ 𝑖 = 1,… , 𝑛 where 𝑦M  is the 
predicted class label. The Random Forest classifier 
is trained on the features extracted from the training 
set (𝑋train, 𝑌train)  and evaluated on the test set 
(𝑋test, 𝑌test). 

 
2.4. Evaluation 

The performance of the Random Forest 
classifier is evaluated using accuracy, precision, 
recall, and F1-score metrics. Accuracy is the ratio 
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of correctly predicted instances to the total number 
of instances Accuracy = :;%:<

:;%:<%6;%6<
. Precision 

is the ratio of correctly predicted positive instances 
to the total predicted positive instances 
Precision = :;

:;%6;
. Furthermore, recall is the ratio 

of correctly predicted positive instances to the total 
actual positive instances Recall = :;

:;%6<
. F1-score 

is the harmonic mean of precision and recall, 
F1-score = 2 × Precision×Recall

Precision%Recall
, where 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, 

and 𝐹𝑁  represent true positives, true negatives, 
false positives, and false negatives, respectively. 
 
2.5. Comparison with Traditional Models 

The proposed method is compared with 
traditional models, including k-mer frequency 
analysis and alignment-based techniques. These 
methods involve manually extracting features from 
DNA sequences and using standard classifiers like 
Support Vector Machines (SVMs) or k-Nearest 
Neighbors (k-NN). In k-mer frequency analysis, k-
mer counts are extracted from the DNA sequences 
and used as features for classification. Let 𝐶(𝑘) be 
the k-mer count vector for a sequence, representing 
the frequency of each k-mer in the sequence. These 
count vectors are used to train classifiers such as 
SVMs or k-NN. 

In alignment-based techniques, DNA 
sequences are aligned to known reference 
sequences using tools like BLAST. The alignment 
scores are used as features for classification. Let 
$A(s)$ be the alignment score vector for a 
sequence, representing the similarity scores to 
reference sequences. These score vectors are used 
to train classifiers. The performance of the 
traditional models is evaluated using the same 
metrics as the proposed method, allowing for a 
comprehensive comparison. 

 
3. Results and Discussion 

The proposed model, which integrates a 
Convolutional Neural Network (CNN) for feature 
extraction and a Random Forest classifier for final 
classification, demonstrated an overall accuracy of 
0.753 on the test set. The detailed performance 
metrics, including precision, recall, and F1-score, 
for each class are presented in Table 1. The model 
achieved a balanced performance across different 
classes, with precision values ranging from 0.65 to 
0.98, recall values ranging from 0.64 to 0.90, and 
F1-scores ranging from 0.65 to 0.88. The highest 
precision (0.98) was observed for class 2, 

indicating a strong ability to correctly identify 
positive instances of this class. Class 6 had the 
highest recall (0.90), reflecting the model's 
effectiveness in capturing most of the actual 
positive instances for this class. The macro-
averaged F1-score, which considers the F1-score 
for each class and computes their unweighted 
mean, was 0.76, highlighting the model's overall 
balanced performance. The results indicate that the 
proposed model outperforms several other models 
in terms of accuracy.  

The CNN-LSTM model achieved an 
accuracy of 0.5947, precision of 0.7628, recall of 
0.4660, and F1-score of 0.5756. The CNN-GRU 
model had an accuracy of 0.5571, precision of 
0.7607, recall of 0.4025, and F1-score of 0.5239. 
The CNN-BiLSTM model achieved an accuracy of 
0.6110, precision of 0.7690, recall of 0.5039, and 
F1-score of 0.6042. Standalone CNN achieved an 
accuracy of 0.7486, precision of 0.8918, recall of 
0.6934, and F1-score of 0.7800. The LSTM model 
achieved an accuracy of 0.7395, precision of 
0.8667, recall of 0.6856, and F1-score of 0.7646. 
The GRU model had an accuracy of 0.7263, 
precision of 0.8908, recall of 0.6258, and F1-score 
of 0.7342. The BiLSTM model achieved an 
accuracy of 0.7397, precision of 0.8881, recall of 
0.6575, and F1-score of 0.7546. 

The performance comparison reveals several 
important insights. Firstly, the proposed hybrid 
model (CNN + Random Forest) exhibits superior 
performance compared to CNN-LSTM, CNN-
GRU, and CNN-BiLSTM models. This suggests 
that while combining CNN with recurrent neural 
network (RNN) architectures like LSTM, GRU, or 
BiLSTM can capture sequential dependencies in 
the data, the Random Forest classifier is more 
effective in leveraging the features extracted by 
CNN for classification purposes. The Random 
Forest's ability to aggregate the decisions from 
multiple trees contributes to its robustness and 
improved classification performance. 

Secondly, standalone deep learning models, 
including CNN, LSTM, GRU, and BiLSTM, also 
demonstrate competitive performance. The CNN 
model, with an accuracy of 0.7486, performs nearly 
on par with the proposed hybrid model, indicating 
the strength of CNN in capturing spatial patterns 
within the DNA sequences. LSTM, GRU, and 
BiLSTM models, which are designed to handle 
sequential data, also achieve reasonable accuracies 
of 0.7395, 0.7263, and 0.7397, respectively. These 
models excel in capturing long-term dependencies 
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and temporal patterns, which are inherent in DNA 
sequences. 

However, the hybrid approach of combining 
CNN for feature extraction with Random Forest for 
classification provides an optimal balance, 
leveraging the strengths of both deep learning and 
traditional machine learning techniques. CNN 
efficiently extracts hierarchical features from the 
DNA sequences, while the Random Forest, with its 
ensemble of decision trees, effectively handles the 
classification task by reducing the risk of 
overfitting and improving generalization. The 
macro-averaged metrics (precision, recall, and F1-
score) provide further insights into the model's 
performance across different classes. The proposed 
model achieved a macro-averaged precision of 
0.81, recall of 0.73, and F1-score of 0.76, indicating 
a balanced performance across classes. This is 
particularly important in the context of DNA 
sequence classification, where it is crucial to 
accurately identify sequences belonging to 
different functional categories. 

In terms of precision, the proposed model 
excels in classifying sequences of classes 1, 2, and 
5, with precision values of 0.93, 0.98, and 0.92, 
respectively. These high precision values suggest 
that the model is effective in minimizing false 
positives for these classes. The high recall value of 
0.90 for class 6 indicates the model's ability to 
correctly identify most of the true positive 
instances for this class, although the precision for 
this class is relatively lower (0.70). The balanced 
F1-scores across different classes, ranging from 
0.65 to 0.88, reflect the model's overall robustness. 
The F1-score, which considers both precision and 
recall, is a crucial metric for evaluating 
classification performance, particularly when 
dealing with imbalanced datasets. The macro-
averaged F1-score of 0.76 further supports the 
effectiveness of the proposed model in maintaining 
a balance between precision and recall across all 
classes. 

Comparing the hybrid model's performance 
with standalone models, it is evident that the CNN 
model achieves the highest precision (0.8918) 
among all models, followed by BiLSTM (0.8881), 
LSTM (0.8667), and GRU (0.8908). These 
precision values highlight the capability of these 
models to accurately identify positive instances. 
However, their recall values are slightly lower, 
indicating potential challenges in capturing all true 
positive instances. This trade-off between precision 
and recall is common in classification tasks, and the 

F1-score provides a balanced measure to evaluate 
overall performance. The LSTM and BiLSTM 
models, with their ability to capture bidirectional 
dependencies, demonstrate strong performance, 
with F1-scores of 0.7646 and 0.7546, respectively. 
The GRU model, although slightly lower in 
performance, achieves a respectable F1-score of 
0.7342. These results highlight the effectiveness of 
RNN-based models in handling sequential data, 
such as DNA sequences. The proposed hybrid 
model (CNN + Random Forest) outperforms 
several other models in terms of accuracy and 
balanced performance metrics. The integration of 
deep learning techniques for feature extraction with 
traditional machine learning classifiers for final 
classification proves to be an effective approach for 
DNA sequence classification. The results 
underscore the potential of hybrid models in 
leveraging the strengths of both paradigms to 
achieve superior predictive performance. 

 
Table 1. Performance Results of Models 

Model Accuracy Precision Recall F1-
Score 

CNN_LSTM 0.5947 0.7628 0.4660 0.5756 
CNN_GRU 0.5571 0.7607 0.4025 0.5239 
CNN_BiLSTM 0.6110 0.7690 0.5039 0.6042 
CNN 0.7486 0.8918 0.6934 0.7800 
LSTM 0.7395 0.8667 0.6856 0.7646 
GRU 0.7263 0.8908 0.6258 0.7342 
BiLSTM 0.7397 0.8881 0.6575 0.7546 
Hybrid Model 0.7534 0.81 0.73 0.7699 

 
Table 2. Performance Results of Models 

Class Precision Recall F1-Score 
0 0.84 0.72 0.77 
1 0.93 0.70 0.80 
2 0.98 0.79 0.88 
3 0.65 0.65 0.65 
4 0.67 0.64 0.66 
5 0.92 0.69 0.79 
6 0.70 0.90 0.79 

Accuracy 0.75 
Average 0.81 0.73 0.76 

 
4. Conclusions 

In this study, we introduced a novel hybrid 
model for human DNA sequence classification that 
combines a Convolutional Neural Network (CNN) 
for feature extraction with a Random Forest 
classifier for final classification. Our model 
achieved a significant performance improvement, 
with an accuracy of 75.34%, outperforming several 
other models, including CNN-LSTM, CNN-GRU, 
and other standalone deep learning approaches. 
The hybrid model's superior performance in 
precision, recall, and F1-score across multiple 
classes demonstrates its effectiveness in accurately 
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classifying DNA sequences into their respective 
categories. The significance of our findings lies in 
the innovative integration of CNNs and Random 
Forests, which effectively captures local 
dependencies within DNA sequences while also 
handling complex decision boundaries. This 
combination allows for a more nuanced 
understanding and classification of genomic data, 
setting our approach apart from traditional models. 
Notably, the CNN-LSTM model, which achieved 
an accuracy of 59.47%, was less effective 
compared to our hybrid model, underscoring the 
potential of combining deep learning with 
traditional machine learning techniques. 

Our research contributes to the existing body 
of knowledge by offering a scalable and efficient 
solution for genomic data analysis, demonstrating 
that hybrid models can leverage the strengths of 
both deep learning and traditional machine learning 
to improve predictive accuracy. This advancement 
has the potential to lead to more accurate and robust 
predictive models in the field of human DNA 
analysis, facilitating better understanding and 
classification of genomic sequences. Future work 
will focus on optimizing the model architecture, 
including fine-tuning hyperparameters and 
experimenting with different combinations of 
feature extraction and classification techniques. 
Additionally, applying the proposed model to 
larger and more diverse genomic datasets could 
provide further insights into its generalizability and 
robustness. Exploring other hybrid approaches, 
such as combining different deep learning 
architectures or incorporating domain-specific 
knowledge, could also be a promising direction for 
improving DNA sequence classification. 
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