Analisis Klasifikasi Hewan Menggunakan Metode K-Nearest Neighbor, Decision Tree, dan Naïve Bayes
Keywords:
Classification, Data Mining, Decision Tree, K-Nearest Neighbor, Naive BayesAbstract
Animal classification is an important topic in biology and conservation science, appropriate data analysis methods can help in identifying, classifying, and understanding animal characteristics. This research aims to analyze and compare various animal classification methods using the K-Nearest Neighbor, Decision Tree, and Naïve Bayes methods by implementing them in the Orange Data Mining environment. This study uses a dataset that includes a wide range of biological, morphological, and behavioral attributes of animals. Through the implementation of the orange tools, three different classification methods were developed and evaluated based on their performance in classifying animals into groups according to their characteristics. The research results show that the performance of the K-Nearest Neighbor method is superior to the others. From 101 data tested using the K-Nearest Neighbor method, an accuracy value of 94.1% was obtained. Comparative analysis reveals differences in accuracy and predictive ability between K-Nearest Neighbor, Decision Tree, and Naïve Bayes. These results provide insight into the effectiveness of each method in the context of animal classification and can potentially serve as a basis for selecting appropriate methods in biological research, conservation, or other animal science studies. This research enriches understanding of orange tools in the context of biology and animal science.
References
[1] K. Annisa, B. Serasi Ginting, and M. A. Syari, “PENERAPAN DATA MINING PENGELOMPOKAN DATA PENGGUNA AIR BERSIH BERDASARKAN KELUHANNYA MENGGUNAKAN METODE CLUSTERING PADA PDAM LANGKAT,†Jurnal Sistem Informasi Kaputama (JSIK), vol. 6, no. 2, 2022, [Online]. Available: www.kaputama.ac.id
[2] Sri Diantika, Hiya Nalatissifa, Riki Supriyadi, Nurlaelatul Maulidah, and Ahmad Fauzi, “IMPLEMENTATION OF MULTI-CLASS GRADIENT BOOSTING TO CLASSIFY ANIMAL SPECIES IN ZOOS,†Antivirus : Jurnal Ilmiah Teknik Informatika, vol. 17, no. 1, pp. 33–40, Jun. 2023, doi: 10.35457/antivirus.v17i1.2812.
[3] N. Ichsan, H. Fatah, T. Wahyuni, and E. Ermawati, “IMPLEMENTASI ORANGE DATA MINING UNTUK PREDIKSI HARGA BITCOIN,†JURNAL RESPONSIF, vol. 4, no. 2, pp. 118–125, 2022, [Online]. Available: https://investing.com/crypto/bitcoin/historical-
[4] S. Hartono, H. Sujaini, and A. Perwitasari, “Komparasi Algoritma Nonparametrik untuk Klasifikasi Citra Wajah Berdasarkan Suku di Indonesia,†JEPIN (Jurnal Edukasi dan Penelitian Informatika), vol. 6, no. 3, 2020.
[5] W. Irmayani, “VISUALISASI DATA PADA DATA MINING MENGGUNAKAN METODE KLASIFIKASI NAÃVE BAYES,†JURNAL KHATULISTIWA INFORMATIKA, vol. IX, no. 1, pp. 68–72, 2021, [Online]. Available: www.bsi.ac.id
[6] S. Alim, “IMPLEMENTASI ORANGE DATA MINING UNTUK KLASIFIKASI KELULUSAN MAHASISWA DENGAN MODEL K-NEAREST NEIGHBOR, DECISION TREE SERTA NAIVE BAYES,†2021.
[7] H. A. Dwi Fasnuari, H. Yuana, and M. T. Chulkamdi, “PENERAPAN ALGORITMA K-NEAREST NEIGHBOR UNTUK KLASIFIKASI PENYAKIT DIABETES MELITUS,†Antivirus : Jurnal Ilmiah Teknik Informatika, vol. 16, no. 2, pp. 133–142, Oct. 2022, doi: 10.35457/antivirus.v16i2.2445.
[8] A. H. Nasrullah, “IMPLEMENTASI ALGORITMA DECISION TREE UNTUK KLASIFIKASI PRODUK LARIS,†Jurnal Ilmiah Ilmu Komputer, vol. 7, no. 2, 2021, [Online]. Available: http://ejournal.fikom-unasman.ac.id
[9] M. Asfi and N. Fitrianingsih, “Implementasi Algoritma Naive Bayes Classifier sebagai Sistem Rekomendasi Pembimbing Skripsi,†InfoTekJar : Jurnal Nasional Informatika dan Teknologi Jaringan, vol. 5, no. 1, 2020, doi: 10.30743/infotekjar.v5i1.2536.
[10] V. Alvian, D. Hidayatullah, A. Nilogiri, H. Azizah, and A. Faruq, “Klasifikasi Siswa Berprestasi Menggunakan Metode K-Nearest Neighbor (KNN) Pada SMA Negeri 2 Situbondo,†2022. [Online]. Available: http://jurnal.unmuhjember.ac.id/index.php/JST
[11] Ainurrohmah, “Akurasi Algoritma Klasifikasi pada Software Rapidminer dan Weka,†PRISMA, Prosiding Seminar Nasional Matematika, vol. 4, pp. 493–499, 2021, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/