Pengembangan Sistem Kontrol Pemilah Kematangan Buah Pisang Pada Konveyor Menggunakan Metode Klasifikasi K-Nearest Neighbors Berbasis OpenCV
Keywords:
Banana Fruit, Maturity Sorting, K-Nearest Neighbors, Arduino, OpenCVAbstract
This research focuses on developing a micro-controller-based banana ripeness sorting tool with the implementation of the K-Nearest Neighbors (KNN) algorithm for the classification of ripeness levels based on RGB color image processing using the OpenCV library. Banana is an important fruit in society because of their high nutritional content, but manual sorting of banana fruit is a challenge for farmers and officers. The tool built uses Arduino UNO as a controller, a conveyor belt with a dynamo motor, and a servo motor for sorting. The KNN method is used for classification based on banana skin color. The results showed that the success rate of sorting reached 100% at the neighboring value of K = 3, 93.33% at K = 5, and 86.66% at K = 1. This tool can be an efficient solution for automatically sorting bananas based on ripeness level with high accuracy.
References
[1] Indarto and Murinto, “Deteksi Kematangan Buah Pisang Berdasarkan Fitur Warna Citra Kulit Pisang Menggunakan Metode Transformasi Ruang Warna HIS,†JUITA J. Inform., vol. 5, no. 1, pp. 15–21, 2017, doi: 10.30595/juita.v5i1.1461.
[2] Sanaeifar, “Perubahan Fisiologis dan Kimiawi Buah Pisang selama Pematangan. Jurnal Ilmiah Pertanian,†J. Ilm. Pertan., vol. 4, no. 2, pp. 123–134, 2016.
[3] A. H. Gomes, “Identifikasi Tingkat Kematangan Buah dengan Metode Pengolahan Citra. Jurnal Teknologi Informasi,†J. Teknol. Inf., vol. 10, no. 4, pp. 87–98, 2014.
[4] Y. Kalnar, R. Balakrishnan, S. Mann, T. Bidyalaksmi, S. Dawange, and N. Indore, “Microcontrollers and Sensors in Post-Harvest Application of Agricultural Commodity: Sorting/Grading and Storage,†in Emerging Post –Harvest Engineering and Technological Intervention for Enhancing Farmer’s Income, 2018, pp. 197–202.
[5] J. Kasyap, Pengantar Machine Learning. Pasuruan: Cipta Pustaka Utama, 2019.
[6] W. Amei, D. Huailin, W. Qingfeng, and L. Ling, “A Survey of Application-Level Protocol Identification Based on Machine Learning,†in 2011 International Conference on Information Management, Innovation Management and Industrial Engineering, 2011, vol. 3, pp. 201–204, doi: 10.1109/ICIII.2011.331.
[7] M. H. Alsharif, A. H. Kelechi, K. Yahya, and S. A. Chaudhry, “Machine Learning Algorithms for Smart Data Analysis in Internet of Things Environment: Taxonomies and Research Trends,†Symmetry, vol. 12, no. 1. p. 88, 2020, doi: 10.3390/sym12010088.
[8] Sugiyanti, “Klasifikasi Tingkat Kematangan Buah Papaya dengan Algoritma K-Nearest Neighbors,†J. Tek. Inform., vol. 2, no. 1, pp. 12–25, 2015.
[9] Y. Permadi and Murinto, “Aplikasi Pengolahan Citra Untuk Identifikasi Kematangan Mentimun Berdasarkan Tekstur Kulit Buah Menggunakan Metode Ekstraksi Ciri Statistik,†J. Inform., vol. 9, no. 1, pp. 1028–1038, 2015, doi: 10.26555/jifo.v9i1.a2044.
[10] Ramanda, “Identifikasi Tingkat Kematangan Buah Mangga Menggunakan Teknik Pengolahan Citra dengan Metode Ekstraksi Ciri Statistik,†J. Teknol. Pangan dan Gizi, vol. 3, no. 1, pp. 34–46, 2015.