Pendeteksian Senjata Api pada Manusia dalam Situasi Real-Time Menggunakan Model YOLOv4-Tiny


  • Dimas Alifta Sulthoni Teknik Informatika, Program Pascasarjana, Universitas Pamulang, Tangerang Selatan, Banten
  • Thoyyibah Thoyyibah Teknik Informatika, Program Pascasarjana, Universitas Pamulang, Tangerang Selatan, Banten


CNN, YOLOV4-tiny, RTSP, Object Detection


This research aims to develop a real-time human firearm detection system using the YOLOv4-tiny method. The system is implemented and tested on public security CCTV cameras to enhance responses to potential security threats. The research results indicate that the developed detection system achieves an accuracy level of approximately 95%. Real-time testing successfully detects various types of firearms, including rifles, shotguns, and handguns. This success demonstrates the potential of YOLOv4-tiny as an effective solution for improving public safety with fast and accurate firearm detection. The research makes a significant contribution to security technology development, offering an efficient means to prevent violent incidents and protect communities effectively.


[1] I. A. Dahlan, D. Ariateja, M. A. Arghanie, M. A. Versantariqh, M. David, and U. D. Fatmawati, “Sistem Deteksi Senjata Otomatis Menggunakan Deep Learning Berbasis CCTV Cerdas,†J. Sist. Cerdas, vol. 4, no. 2, pp. 126–141, Aug. 2021, doi: 10.37396/jsc.v4i2.172.

[2] R. Parengkuan, D. Antouw, and F. Pongkorung, “Penegakan Hukum Oleh Kepolisian Republik Indonesia Terhadap Penyalahgunaan Kepemilikan Ilegal Senjata Api,†LEX Crim., vol. 11, no. 4, pp. 1–13, 2022.

[3] J. S. W. Hutauruk, T. Matulatan, and N. Hayaty, “Deteksi Kendaraan secara Real Time menggunakan Metode YOLO Berbasis Android,†J. Sustain. J. Has. Penelit. dan Ind. Terap., vol. 9, no. 1 SE-Articles, pp. 8–14, May 2020, doi: 10.31629/sustainable.v9i1.1401.

[4] J. Du, “Understanding of Object Detection Based on CNN Family and YOLO,†J. Phys. Conf. Ser., vol. 1004, no. 1, p. 12029, 2018, doi: 10.1088/1742-6596/1004/1/012029.

[5] A. M. Soto i Serrano, Albert López Peña, “YOLO Object Detector for Onboard Driving Images,†Eng. Informà tica, 2017, [Online]. Available:

[6] R. Pilipović, V. Risojević, J. BožiÄ, P. Bulić, and U. LotriÄ, “An Approximate GEMM Unit for Energy-Efficient Object Detection,†Sensors, vol. 21, no. 12. 2021, doi: 10.3390/s21124195.

[7] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection,†in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 779–788, doi: 10.1109/CVPR.2016.91.