Penerapan Data Mining Dalam Menentukan Pelajaran yang Diminati Dengan Metode Support Vector Mechine (SVM)

Authors

  • Iis Sulistilawati Teknik Informatika, Program Pascasarjana, Universitas Pamulang, Tangerang Selatan, Banten
  • Ahmad Musyafa Teknik Informatika, Program Pascasarjana, Universitas Pamulang, Tangerang Selatan, Banten
  • Rafi Mahmud Zain Teknik Informatika, Program Pascasarjana, Universitas Pamulang, Tangerang Selatan, Banten

Keywords:

Prediction, Data Mining, Support Vector Machine (SVM)

Abstract

This research focuses on predicting students' grades and learning interests using the Support Vector Machine (SVM) method in education. It is crucial for students to determine the subjects they are most interested in to achieve optimal results. Data mining, particularly through the SVM method, can help identify students' learning interests based on historical data. SVM analyzes various variables related to students' academic performance, such as test scores, assignments, attendance, and class participation. By analyzing this data, SVM builds a model that predicts students' interest in specific subjects. This model provides insights into students' potential academic performance. The predictions generated by this SVM model can be used by educators to design more personalized learning strategies. By understanding students' interests and potential, educators can offer lesson recommendations that align with individual needs, enhancing students' motivation and academic performance. Moreover, these predictions assist students in making more informed decisions regarding subject selection, optimizing their potential and achieving better educational outcomes. This research aims to provide a tool that helps direct students' learning interests effectively, thereby improving the overall quality of education and academic results.

References

[1] D. Pristiwanti, B. Badariah, S. Hidayat, and R. S. Dewi, “Pengertian Pendidikan,” J. Pendidik. dan Konseling, vol. 4, no. 6, pp. 337–347, 2022, doi: 10.33387/bioedu.v6i2.7305.

[2] A. T. Alhasani, H. Alkattan, A. A. Subhi, E.-S. M. El-Kenawy, and M. M. Eid, “A Comparative Analysis of Methods for Detecting and Diagnosing Breast Cancer Based on Data Mining,” J. Artif. Intell. Metaheuristics, vol. 4, no. 2, pp. 08–17, 2023, doi: 10.54216/jaim.040201.

[3] R. A. Permana and S. Sahara, “Metode Support Vector Machine Sebagai Penentu Kelulusan Mahasiswa pada Pembelajaran Elektronik,” J. Khatulistiwa Inform., vol. 7, no. 1, 2019.

[4] H. Saputra, “Analisis Sentimen Pada Vaksin Booster Menggunakan Algoritma Support Vector Machine Multiclass Di Twitter,” J. Teknol. Pint., vol. 3, no. 10, pp. 1–26, 2023.

[5] E. Suhartono, “Systematic Literatur Review ( SLR ): Metode , Manfaat , Dan Tantangan Learning Analytics Dengan Metode Data Mining di Dunia Pendidikan Tinggi,” J. Ilm. INFOKAM, vol. 13, no. 1, pp. 73–86, 2017.

[6] N. Wanaspati, S. Anraeni, and H. Darwis, “Support Vector Machine untuk Analisis Sentimen Masyarakat Terhadap Penggunaan Antibiotik di Indonesia,” Indones. J. Comput. Sci., vol. 12, no. 4, pp. 2196–2206, 2023, doi: 10.33022/ijcs.v12i4.3320.

[7] F. K. Wattimury and E. Seniwati, “Penentuan Peminatan Mahasiswa Prodi Informatika di Universitas Amikom Yogyakarta Menggunakan SVM,” INTECHNO Journal-Information Technol. J., vol. 1, no. 4, pp. 15–18, 2019.

[8] M. D. Purbolaksono, M. I. Tantowi, A. I. Hidayat, and A. Adiwijaya, “Perbandingan support vector machine dan modified balanced random forest dalam deteksi pasien penyakit diabetes,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 2, pp. 393–399, 2021.

[9] E. Indrayuni, “Analisa Sentimen Review Hotel Menggunakan Algoritma Support Vector Machine Berbasis Particle Swarm Optimization,” EVOLUSI J. Sains dan Manaj., vol. 4, no. 2, 2016.

[10] S. Dwiasnati and Y. Devianto, “Optimasi Prediksi Bencana Banjir menggunakan Algoritma SVM untuk penentuan Daerah Rawan Bencana Banjir,” Pros. SISFOTEK, vol. 5, no. 1, pp. 202–207, 2021.

Downloads

Published

2024-07-31