Analisis Data Produksi Biskuit Dengan Algoritma Naive Bayes Dan Random Forest

Authors

  • Sabarrudin Teknik Informatika S-2, Universitas Pamulang
  • Agung Budi Santoso Universitas Pamulang, Kota Tangerang Selatan, Banten
  • Sajarwo Anggai Universitas Pamulang, Kota Tangerang Selatan, Banten

Keywords:

Naive Bayes, Random Forest, Classification, production

Abstract

In the manufacturing industry, production problems often occur, often production does not match market demand, production is not well planned, therefore this study aims to develop a classification model using machine learning based on the Naive Bayes and Random Forest algorithms to classify biscuit production data. The main focus of this study is to utilize variables such as dough, number of mixers, production time parameters, and other relevant production factors to improve accuracy in classification. The dataset used in this study includes information from several previous production periods, namely data in 2019-2023, which is then used to train and test the Naive Bayes and Random Forest algorithm models. The training and validation process is carried out using commonly used model performance evaluation techniques. The results of the study show that the Random Forest model is able to provide high accuracy, namely 97.54% while Naive Bayes is 96.45%. Further analysis was also carried out to identify the variables that most influence production results, providing additional insights for optimizing the production process. The results of this study can contribute to the development of classification models for the food and beverage industry, especially in biscuit products, but also offer a more specific view of the factors that influence biscuit production. The implementation of this study can be a basis for manufacturers to make more precise and effective decisions in managing their production.

References

[1] Agung Nugroho1, Yoga Religia2.(2021). Analisis Optimasi Algoritma Klasifikasi Naive Bayes menggunakan Genetic Algorithm dan Bagging, JURNAL RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 5 No. 3 (2021) 504 - 510 ISSN Media Elektronik: 2580-0760

[2] Alfan Zainal Macfud, Abdi Pandu Kusuma, Wahyu Dwi Puspitasari.(2023). Analisis Algoritma Naive Bayes Classifier (Nbc), Pada Klasifikasi Tingkat Minat Barang Di Toko Violet Cell, JATI (Jurnal Mahasiswa Teknik Informatika) Vol. 7 No. 1, Februari 2023

[3] Angga Pebdika, Ruli Herdiana, Dodi Solihudin.(2023). Klasifikasi Menggunakan Metode Naive Bayes Untuk Menentukan Calon Penerima Pip, JATI (Jurnal Mahasiswa Teknik Informatika) Vol. 7 No. 1, Februari 2023

[4] Chikitha Syahrika Arsya1, Marina Elsera2.(2023).Implementasi Random Forest Dalam Melakukan Klasifikasi Kata Sarkasme Pada Media Sosial Facebook, Djtechno : Jurnal Teknologi Informasi, Vol. 4, No. 1 Juli 2023, E-ISSN: 2745-3758, P-ISSN : 2776-8546 DOI: 10.46576/djtechno

[5] Dian Pramesti1 & Wiga Maulana Baihaqi. (2022). Perbandingan Prediksi Jumlah Transaksi Ojek Online Menggunakan Regresi Linier dan Random Forest Generation Journal /Vol.7 No.3 (Special Issue) / e-ISSN: 2549-2233 / p-ISSN: 2580-4952.

[6] Fajar Mu’Alim.1), Rahmi Hidayati2).(2022).Implementasi Metode Random Forest Untuk Penjurusan Siswa Di Madrasah Aliyah Negeri Sintang, Jurnal JUPITER, Vol. 14 No. 1 Bulan April, Tahun 2022 , Hal. 116 – 125

[7] Fandi Yulian Pamuji 1, Viry Puspaning Ramadhan 2.(2021).Komparasi Algoritma Random Forest Dan Decision Tree Untuk Memprediksi Keberhasilan Immunotheraphy,Vol.7 No.1 Tahun 2021, pp 46-50, Jurnal Teknologi dan Manajemen Informatika http://jurnal.unmer.ac.id/index.php/jtmi P-ISSN: 1693-6604 E-ISSN: 2580-8044

[8] Fauji Faisal Nugraha*1, Iyan Sunandar2, Christina Juliane3.(2022). Penerapan Data Mining Dengan Metode Klasifikasi Menggunakan Algoritma C4.5, Jurnal Teknik Informatika dan Sistem Informasi ISSN 2407-4322, Vol. 9, No. 4, Desember 2022, Hal. 2862-2869 E- ISSN 2503-2933

[9] Gabriela Militia Momole1, Evangs Mailoa2.(2022).Perbandingan Naïve Bayes Dan Random Forest Dalam Klasifikasi Bahasa Daerah, Jurnal Teknik Informatika dan Sistem Informasi ISSN 2407-4322, Vol. 9, No. 2, Juni 2022, Hal. 855-863 E- ISSN 2503-2933

[10] Gde Agung Brahmana Suryanegara1, Adiwijaya2, Mahendra Dwifebri Purbolaksono3.(2021). Peningkatan Hasil Klasifikasi pada Algoritma Random Forest untuk Deteksi Pasien Penderita Diabetes Menggunakan Metode Normalisasi, JURNAL RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 5 No. 1 (2021) 114 - 122 ISSN Media Elektronik: 2580-0760

Downloads

Published

2024-12-30