Analisis Resiko Stunting Di Kota Tangerang Menggunakan Metode Regresi Linier dan Support Vector Machine

Authors

  • Muhamad Farid Hasan Khadafi Program Studi Teknik Informatika S-2, Universitas Pamulang
  • Achmad Hindasyah Program Studi Teknik Informatika S-2, Universitas Pamulang
  • Tukiyat Program Studi Teknik Informatika S-2, Universitas Pamulang

Keywords:

stunting, linear regression, machine learning, support vector machine

Abstract

Stunting remains a significant public health issue in Indonesia, particularly in Tangerang City, affecting the physical and cognitive development of children. This problem requires serious attention due to its long-term impacts on children's quality of life and their potential in the future.This study aims to analyze the risk factors contributing to the occurrence of stunting in Tangerang City using Linear Regression and Support Vector Machine (SVM) methods. The research question focuses on identifying and predicting the main risk factors influencing the prevalence of stunting. The research method employs Linear Regression Algorithm and Support Vector Machine Algorithm. The study population consists of children under five years old registered at community health centers in Tangerang City. Data samples were collected from 5,376 children, with 80% (4,300 children) used for training and 20% (1,076 children) for model testing. Several socio-economic and health variables were considered as potential risk factors, including household income, maternal education level, access to clean water and sanitation, dietary diversity, and the presence of antenatal care. Data analysis revealed performance differences between the two models used. The SVM model achieved a significantly higher accuracy of 89% with a standard error of 0.4, demonstrating strong predictive capability. In contrast, the Linear Regression model yielded a lower accuracy of 74% with a standard error of 1.5. This difference highlights the potential advantages of SVM in capturing complex and non-linear relationships within the dataset. These findings can inform targeted interventions and policy recommendations to address the causes of stunting in Tangerang City. Further research could explore a broader range of risk factors.

References

[1] Adhitama, R., & Handayani, E. S. (2020). Implementasi algoritma machine learning untuk prediksi kejadian stunting. Jurnal Ilmu Kesehatan Masyarakat, 6(1), 1-10.

[2] Adhitama, R., Handayani, E. S., & Kusuma, A. (2021). Prediksi kejadian stunting pada anak balita menggunakan algoritma machine learning. Jurnal Kesehatan Masyarakat, 7(1), 1-10.

[3] Handayani, E. S., Aditama, R., & Kusuma, A. (2022). Analisis faktor-faktor yang mempengaruhi kejadian stunting pada anak balita. Jurnal Kesehatan Masyarakat, 8(1), 1-10.

[4] Kusumadewi, S., Hartono, J., & Wardoyo, W. (2020). Prediksi kejadian stunting pada anak balita di Indonesia menggunakan algoritma Regresi Linier. Jurnal Teknologi Informasi dan Komunikasi, 14(2), 1-10.

[5] Pratama, R. A., & Aditama, R. (2021). Prediksi kejadian stunting pada anak balita di Kabupaten Sleman menggunakan algoritma support vector machine. Jurnal Kesehatan Masyarakat, 7(2), 1-10.

[6] Arief, M., & Irfan, M. (2023). Prediksi stunting pada anak balita di Provinsi Jawa Barat menggunakan algoritma deep learning. Jurnal Ilmiah Teknologi dan Informasi, 14(1), 1-10.

[7] Ikhwan, M. N., & Purwanto, H. (2023). Prediksi stunting pada anak balita di Provinsi Daerah Istimewa Yogyakarta menggunakan algoritma random forest. Jurnal Teknologi dan Informasi, Hikmah, N., Suryani, L., & Yuniarti,

[8] Anggraini, I. A. P., & Artini, N. L. P. S. (2022). Prediksi stunting pada anak balita di Provinsi Bali menggunakan algoritma support vector machine. E-Jurnal Matematika dan Terapan, 10(1), 1-10.

[9] Hidayati, N., & Wibowo, A. (2021). Prediksi stunting pada anak balita di Provinsi Jawa Tengah menggunakan algoritma logistic regression. Journal of Technology and Science, 2(1), 1-10.

[10] Suyanto. (2019). Data Mining untuk Klasifikasi dan Klasterisasi Data

INFORMATIKA.

[11] Pratiwi, S. N. D., & Ulama, B. S. S. (2016). Klasifikasi Email Spam dengan Menggunakan Metode Support Vector Machine dan k-Nearest Neighbor. Jurnal Sains Dan Seni ITS, 5(2), 344–349.

[12] World Health Organization. (2016). WHO child growth standards: length/height- for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: methods and development. Geneva: WHO. DOI: 10.1186/1471-2431-13-73

[13] Zhang, X., Chen, X., & He, Z. (2015). An ACO-based algorithm for parameter optimization of support vector machines. Expert Systems with Applications, 42(9), 3288-3298. DOI: 10.1016/j.eswa.2014.12.021

[14] Y. Habchi et al., “Machine Learning and Vision Transformers for Thyroid Carcinoma Diagnosis: A review,” Mar. 2024, [Online]. Available: http://arxiv.org/abs/2403.13843

[15] I. A. Esha, “Multiclass Emotion Classification by using Spectrogram Image Analysis: A CNN-XGBoost Fusion Approach,” 2023.

[16] M. Tan and Q. V. Le, “EfficientNetV2: Smaller Models and Faster Training,” Apr. 2021, [Online]. Available: http://arxiv.org/abs/2104.00298]. Available: http://arxiv.org/abs/2010.11929

[17] A. Khan, S. Khan, B. Hassan, R. Khan, and Z. Zheng, “SmokerViT: A Transformer-Based Method for Smoker Recognition,” Computers, Materials and Continua, vol. 77, no. 1, pp. 403–424, 2023, doi: 10.32604/cmc.2023.040251.

[18] Rousseeuw, P. J., & Leroy, A. M. (2003). Robust regression and outlier detection.

[19] Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. DOI: 10.1023/A:1010933404324

Downloads

Published

2025-07-31