Analisis Topik Penelitian Pendidikan Matematika Di Indonesia Dengan Menggunakan Metode Latent Dirichlet Allocation (LDA)

Authors

  • Beni junedi Program Studi Teknik Informatika S-2, Universitas Pamulang
  • Agung Budi Susanto Program Studi Teknik Informatika S-2, Universitas Pamulang
  • Sajarwo Anggai Program Studi Teknik Informatika S-2, Universitas Pamulang

Keywords:

Topic Modeling, Latent Dirichlet Allocation (LDA), Scientific publication abstracts, Mathematics Education

Abstract

On the research topic of Mathematics Education readers or researchers still have difficulty identifying research topics in the field of Mathematics Education. This is because there is no system or model that can be seen or used in determining research topics. Besides that, there is no automation of the research direction of Mathematics Education in Indonesia using topic modeling, so it is necessary to conduct a study or research on this. In research, the most important thing is the trend of research that is currently developing so that it can determine the novelty of the studies that have been done before. While there is no system used to determine trends and state of the art from research in the field of Mathematics Education. The aim of the research is to find out an overview of the research topics in Mathematics Education in Indonesia in 2020-2023 and to find out the implementation of modeling research topics in Mathematics Education in Indonesia using the Latent Dirichlet Allocation (LDA) method for 2020-2023. The research design consisted of literature study, data collection, data pre-processing: tokenization, case folding, stopword removal, and stemming, topic analysis with LDA, evaluation of the LDA method, and conclusions. Analysis of Topic Modeling with Latent Dirichlet Allocation using packages used from python including the Gensim and pyLDAvis packages. Based on the coherence score, the best number of topics (K) = 18, with a coherence score = 0.426 (the highest), it can be concluded that the number of topics produced is 18 topics.

References

[1] L. Hickman, S. Thapa, L. Tay, M. Cao, and P. Srinivasan, “Text Preprocessing for Text Mining in Organizational Research: Review and Recommendations,” Organ. Res. Methods, vol. 25, no. 1, 2022, doi: 10.1177/1094428120971683.

[2] S. Kumar, A. K. Kar, and P. V. Ilavarasan, “Applications of text mining in services management: A systematic literature review,” International Journal of Information Management Data Insights, vol. 1, no. 1. 2021, doi: 10.1016/j.jjimei.2021.100008.

[3] M. Alzate, M. Arce-Urriza, and J. Cebollada, “Mining the text of online consumer reviews to analyze brand image and brand positioning,” J. Retail. Consum. Serv., vol. 67, 2022, doi: 10.1016/j.jretconser.2022.102989.

[4] F. S. Ramadhan and A. P. W. Wibowo, “Text Clustering Analysis Of Public Sentiment On Twitter About Tokopedia Bts Using Orange Data Mining,” J. Darma Agung, Vol. Jurnal Dar, 2022.

[5] A. Deolika, K. Kusrini, and E. T. Luthfi, “Analisis Pembobotan Kata Pada Klasifikasi Text Mining,” J. Teknol. Inf., vol. 3, no. 2, 2019, doi: 10.36294/jurti.v3i2.1077.

[6] A. Y. Muniar, P. Pasnur, and K. R. Lestari, “Penerapan Algoritma K-Nearest Neighbor pada Pengklasifikasian Dokumen Berita Online,” Inspir. J. Teknol. Inf. dan Komun., vol. 10, no. 2, 2020, doi: 10.35585/inspir.v10i2.2570.

[7] R. Gusdiana, I. Alfian, and C. Juliane, “Implementation Of Text Processing For Sentiment Analysis Of Tax Payment Interest After The ‘Rubicon’ Phenomenon,” J. Tek. Inform., vol. 4, no. 5, 2023, doi: 10.52436/1.jutif.2023.4.5.1014.

[8] K. Rosikin, S. Basuki, and Y. Azhar, “Ekstraksi Informasi Kesehatan Masyarakat Dari Tweet Berbahasa Indonesia Berbasis Klasifikasi Dengan Algoritma Naive Bayes,” J. Repos., vol. 2, no. 2, 2020, doi: 10.22219/repositor.v2i2.237.

[9] F. Yao and Y. Wang, “Tracking urban geo-topics based on dynamic topic model,” Comput. Environ. Urban Syst., vol. 79, 2020, doi: 10.1016/j.compenvurbsys.2019.101419.

[10] Y. F. Hernawan, P. P. Adikara, and R. C. Wihandika, “Peringkasan Artikel Berbahasa Indonesia Menggunakan TextRank dengan Pembobotan BM25,” J. Teknol. Inf. dan Ilmu Komput., vol. 9, no. 1, 2022, doi: 10.25126/jtiik.2022913765.

[11] M. Noperia, I. Ishak, and V. W. Sari, “Implementasi Data Mining Pengelompokan Data Nilai Untuk Menentukan Minat Belajar Seni Budaya,” J. Sist. Inf. Triguna Dharma (JURSI TGD), vol. 2, no. 1, 2023, doi: 10.53513/jursi.v2i1.5656.

[12] D. Nurmalasari and H. Ribut Yuliantoro, “Implementasi Ekstraksi Fitur untuk Pengelompokan Dokumen Proposal Menggunakan Algoritma Naïve Bayes,” J. Komput. Terap., vol. 8, no. 1, 2022, doi: 10.35143/jkt.v8i1.5351.

[13] M. A. P. Subali and P. Wijaya, “Sistem Question Answering untuk Bahasa Bali menggunakan Metode Rule-Based dan String Similarity,” Techno.Com, vol. 20, no. 2, 2021, doi: 10.33633/tc.v20i2.4390.

[14] E. Indriati, N. Suharyani Azisa, E. Ivo Sihombing, and Z. Sukma Dewi Mokodompit, “Implementasi Algoritma K-Means Clustering Untuk Pengelompokan Status Penerima Kip Kuliah Mahasiswa Universitas Papua,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 6, 2024, doi: 10.36040/jati.v7i6.8222.

[15] S. Paembonan and H. Abduh, “Penerapan Metode Silhouette Coefficient untuk Evaluasi Clustering Obat,” PENA Tek. J. Ilm. Ilmu-Ilmu Tek., vol. 6, no. 2, 2021, doi: 10.51557/pt_jiit.v6i2.659.

[16] J. W. Fernanda, “Pemodelan Persepsi Pembelajaran Online Menggunakan Latent Dirichlet Allocation,” J. Stat. Univ. Muhammadiyah Semarang, vol. 9, no. 2, 2021, doi: 10.26714/jsunimus.9.2.2021.79-85.

[17] C. C. Silva, M. Galster, and F. Gilson, “Topic modeling in software engineering research,” Empir. Softw. Eng., vol. 26, no. 6, 2021, doi: 10.1007/s10664-021-10026-0.

[18] Akdeas Oktanae Widodo, F. Septiadi, and Nur Aini Rakhmawati, “Analisis Tren Konten Pada Vtuber Indonesia Menggunakan Latent Dirichlet Allocation,” J. Inform. dan Rekayasa Elektron., vol. 6, no. 1, 2023, doi: 10.36595/jire.v6i1.718.

[19] T. Titiana and D. H. Bangkalang, “Analisis Dan Penerapan Topic Modeling Pada Judul Tugas Akhir Mahasiswa Menggunakan Metode Latent Dirichlet Allocation (Lda),” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 8, no. 4, 2023, doi: 10.29100/jipi.v8i4.4254.

[20] N. A. Rakhmawati, R. A. Zuhroh, Q. N. Muna, and V. R. Dianutami, “Klasterisasi Keyword Terkait Pornografi pada Media Sosial Twitter Menggunakan Latent Dirichlet Allocation,” J. Inf. Eng. Educ. Technol., vol. 6, no. 2, 2022, doi: 10.26740/jieet.v6n2.p66-72.

Downloads

Published

2025-07-31