Analisis Eksperimental Kinerja Transformers, VADER, dan Naive Bayes dalam Analisis Sentimen Teks Bahasa Indonesia: Studi Kasus Komentar Terkait Judi Online
Keywords:
sentiment analysis, VADER, Naive Bayes, Transformers, online gambling, Indonesian languageAbstract
Sentiment analysis is a subfield of Natural Language Processing (NLP) that focuses on detecting and classifying opinions expressed in textual data. In the digital social context, the increasing volume of public comments related to online gambling in Indonesia highlights the need to map public perception. This study aims to conduct an experimental analysis of the performance of three popular sentiment analysis approaches: VADER (Valence Aware Dictionary and sEntiment Reasoner), Naive Bayes, and Transformers-based models, specifically on Indonesian-language text. The dataset consists of public comments from social media and digital platforms containing keywords related to online gambling. The research process involves text preprocessing, data labeling, model training (for Naive Bayes and Transformers), and performance testing. Evaluation metrics include accuracy, precision, recall, and F1-score. The experimental results show that the Transformers model (using IndoBERT) achieves the highest performance in terms of accuracy and generalization ability, while VADER performs less optimally due to its limitations in understanding Indonesian linguistic context. Naive Bayes demonstrates moderate and consistent performance but lacks the capability to capture complex contextual meanings. These findings contribute to selecting appropriate sentiment analysis methods for non-English languages and support the development of more accurate public opinion detection systems in the future
References
Abimanyu, D., Budianita, E., Pandu Cynthia, E., Yanto, F., Studi Teknik Informatika, P., & Sains Dan Teknologi, F. (2022). Analisis Sentimen Akun Twitter Apex Legends Menggunakan VADER. Jurnal Nasional Komputasi Dan Teknologi Informasi, 5(3). https://techno.kompas.com
[2] Akbar, Y., & Sugiharto, T. (2023). Analisis Sentimen Pengguna Twitter di Indonesia Terhadap ChatGPT Menggunakan Algoritma C4.5 dan Naïve Bayes (Yuma Akbar 1*, Tri Sugiharto 2 ) Analisis Sentimen Pengguna Twitter di Indonesia Terhadap ChatGPT Menggunakan Algoritma C4.5 dan Naïve Bayes. Jurnal Sains Dan Teknologi, 5(1), 115–122. https://doi.org/10.55338/saintek.v4i3.1368
[3] Annisa Laras, Najwa Salvabillah, Cindy Caroline, Jusini Delas H, Farra Dinda, & Mic Finanto. (2024). Analisis Dampak Judi Online di Indonesia. Concept: Journal of Social Humanities and Education, 3(2), 320–331. https://doi.org/10.55606/concept.v3i2.1304
[4] Aprian Putra dan, J., & Budi, A. (n.d.). PENERAPAN NATURAL LANGUAGE PROCESSING DALAM APLIKASI CHATBOT SEBAGAI MEDIA PENCARIAN INFORMASI DENGAN MENGGUNAKAN REACT (STUDI KASUS: INSTITUT BISNIS DAN INFORMATIKA KWIK KIAN GIE).
[5] Gultom, M., Marikros, J., & Rusli, W. (n.d.). SEMINAR NASIONAL CORISINDO Penerapan Vader Sentiment untuk Mendeteksi Sentimen Bahasa Inggris berbasis Website.
[6] Hendrawan, A., & Sela, E. I. (2024). Analisis Sentimen Komentar Youtube Tentang Resesi Global 2023 Menggunakan LSTM. Jurnal Indonesia : Manajemen Informatika Dan Komunikasi, 5(1), 587–593. https://doi.org/10.35870/jimik.v5i1.526
[7] Maghfiroh Universitas Negeri Surabaya Jl Ketintang No, N., Gayungan, K., Surabaya, K., & Timur, J. (n.d.). BAHASA INDONESIA SEBAGAI ALAT KOMUNIKASI MASYARAKAT DALAM KEHIDUPAN SEHARI-HARI.
[8] Martantoh, E., & Yanih, N. (2022). Implementasi Metode Naïve Bayes Untuk Klasifikasi Karakteristik Kepribadiaan Siswa Di Sekolah MTS Darussa’adah Menggunakan PHP MySQL Implementation of Naive Bayes Method for Classification of Student’s Personality Characteristics at MTS Darussa’adah School Using PHP Mysql. In JTSI (Vol. 3, Issue 2).
[9] Naufal Zaidan Nayottama. (n.d.). Dampak Judi Online terhadap Kondisi Finansial, Hubungan Sosial, dan.
[10] Puspita, R., & Widodo, A. (2021). Perbandingan Metode KNN, Decision Tree, dan Naïve Bayes Terhadap Analisis Sentimen Pengguna Layanan BPJS. Jurnal Informatika Universitas Pamulang, 5(4), 646. https://doi.org/10.32493/informatika.v5i4.7622
[11] Putra, D. H., Wahyu, G., & Noto, I. (n.d.). IMPLEMENTASI GENERATIVE PRE-TRAINED TRANSFORMERS 2 UNTUK MENGOREKSI KESALAHAN PENULISAN BAHASA INDONESIA PADA DOKUMEN JURNAL.
[12] Putri, I. (n.d.). MEDIA SOSIAL SEBAGAI MEDIA PERGESERAN INTERAKSI SOSIAL REMAJA (Vol. 2, Issue 2).
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Sugiyo, Agung Budi Susanto, Sajarwo Anggai

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
